Rezolvați pentru f
f=-\frac{x}{-2x^{2}+5x-1}
x\neq 0\text{ and }x\neq \frac{\sqrt{17}+5}{4}\text{ and }x\neq \frac{5-\sqrt{17}}{4}
Rezolvați pentru x (complex solution)
x=-\frac{\sqrt{17f^{2}+10f+1}-5f-1}{4f}
x=\frac{\sqrt{17f^{2}+10f+1}+5f+1}{4f}\text{, }f\neq 0
Rezolvați pentru x
x=-\frac{\sqrt{17f^{2}+10f+1}-5f-1}{4f}
x=\frac{\sqrt{17f^{2}+10f+1}+5f+1}{4f}\text{, }f\leq \frac{-2\sqrt{2}-5}{17}\text{ or }\left(f\neq 0\text{ and }f\geq \frac{2\sqrt{2}-5}{17}\right)
Grafic
Partajați
Copiat în clipboard
\frac{1}{f}x=2x^{2}-5x+1
Reordonați termenii.
1x=2x^{2}f-5xf+f
Variabila f nu poate fi egală cu 0, deoarece împărțirea la zero nu este definită. Înmulțiți ambele părți ale ecuației cu f.
2x^{2}f-5xf+f=1x
Interschimbați părțile, astfel încât toți termenii variabili să fie pe partea stângă.
2fx^{2}-5fx+f=x
Reordonați termenii.
\left(2x^{2}-5x+1\right)f=x
Combinați toți termenii care conțin f.
\frac{\left(2x^{2}-5x+1\right)f}{2x^{2}-5x+1}=\frac{x}{2x^{2}-5x+1}
Se împart ambele părți la 2x^{2}-5x+1.
f=\frac{x}{2x^{2}-5x+1}
Împărțirea la 2x^{2}-5x+1 anulează înmulțirea cu 2x^{2}-5x+1.
f=\frac{x}{2x^{2}-5x+1}\text{, }f\neq 0
Variabila f nu poate să fie egală cu 0.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}