Direct la conținutul principal
Descompunere în factori
Tick mark Image
Evaluați
Tick mark Image

Probleme similare din căutarea web

Partajați

p+q=-3 pq=1\times 2=2
Descompuneți expresia în factori prin grupare. Mai întâi, expresia trebuie să fie rescrisă ca a^{2}+pa+qa+2. Pentru a găsi p și q, configurați un sistem pentru a fi rezolvat.
p=-2 q=-1
Deoarece pq este pozitiv, p și q au același semn. Deoarece p+q este negativ, p și q sunt negative. Singura astfel de pereche este soluția de sistem.
\left(a^{2}-2a\right)+\left(-a+2\right)
Rescrieți a^{2}-3a+2 ca \left(a^{2}-2a\right)+\left(-a+2\right).
a\left(a-2\right)-\left(a-2\right)
Factor a în primul și -1 în al doilea grup.
\left(a-2\right)\left(a-1\right)
Scoateți termenul comun a-2 prin utilizarea proprietății de distributivitate.
a^{2}-3a+2=0
Polinomul de gradul doi se poate descompune în factori folosind transformarea ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), unde x_{1} și x_{2} sunt soluțiile ecuației de gradul doi ax^{2}+bx+c=0.
a=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2}}{2}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate utilizând formula rădăcinilor ecuației de gradul al doilea: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula rădăcinilor ecuației de gradul al doilea oferă două soluții, una atunci când operația ± este de adunare și una atunci când este de scădere.
a=\frac{-\left(-3\right)±\sqrt{9-4\times 2}}{2}
Ridicați -3 la pătrat.
a=\frac{-\left(-3\right)±\sqrt{9-8}}{2}
Înmulțiți -4 cu 2.
a=\frac{-\left(-3\right)±\sqrt{1}}{2}
Adunați 9 cu -8.
a=\frac{-\left(-3\right)±1}{2}
Aflați rădăcina pătrată pentru 1.
a=\frac{3±1}{2}
Opusul lui -3 este 3.
a=\frac{4}{2}
Acum rezolvați ecuația a=\frac{3±1}{2} atunci când ± este plus. Adunați 3 cu 1.
a=2
Împărțiți 4 la 2.
a=\frac{2}{2}
Acum rezolvați ecuația a=\frac{3±1}{2} atunci când ± este minus. Scădeți 1 din 3.
a=1
Împărțiți 2 la 2.
a^{2}-3a+2=\left(a-2\right)\left(a-1\right)
Descompuneți în factori expresia inițială utilizând ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Înlocuiți x_{1} cu 2 și x_{2} cu 1.