Rezolvați pentru b (complex solution)
\left\{\begin{matrix}b=x-\frac{c}{a^{2}}\text{, }&a\neq 0\\b\in \mathrm{C}\text{, }&c=0\text{ and }a=0\end{matrix}\right,
Rezolvați pentru b
\left\{\begin{matrix}b=x-\frac{c}{a^{2}}\text{, }&a\neq 0\\b\in \mathrm{R}\text{, }&c=0\text{ and }a=0\end{matrix}\right,
Rezolvați pentru a (complex solution)
\left\{\begin{matrix}a=-\left(x-b\right)^{-\frac{1}{2}}\sqrt{c}\text{; }a=\left(x-b\right)^{-\frac{1}{2}}\sqrt{c}\text{, }&x\neq b\\a\in \mathrm{C}\text{, }&c=0\text{ and }x=b\end{matrix}\right,
Rezolvați pentru a
\left\{\begin{matrix}a=\sqrt{\frac{c}{x-b}}\text{; }a=-\sqrt{\frac{c}{x-b}}\text{, }&\left(c\geq 0\text{ and }x>b\right)\text{ or }\left(c\leq 0\text{ and }x<b\right)\\a\in \mathrm{R}\text{, }&c=0\text{ and }x=b\end{matrix}\right,
Grafic
Partajați
Copiat în clipboard
a^{2}x-a^{2}b=c
Utilizați proprietatea de distributivitate pentru a înmulți a^{2} cu x-b.
-a^{2}b=c-a^{2}x
Scădeți a^{2}x din ambele părți.
-ba^{2}=-xa^{2}+c
Reordonați termenii.
\left(-a^{2}\right)b=c-xa^{2}
Ecuația este în forma standard.
\frac{\left(-a^{2}\right)b}{-a^{2}}=\frac{c-xa^{2}}{-a^{2}}
Se împart ambele părți la -a^{2}.
b=\frac{c-xa^{2}}{-a^{2}}
Împărțirea la -a^{2} anulează înmulțirea cu -a^{2}.
b=x-\frac{c}{a^{2}}
Împărțiți c-xa^{2} la -a^{2}.
a^{2}x-a^{2}b=c
Utilizați proprietatea de distributivitate pentru a înmulți a^{2} cu x-b.
-a^{2}b=c-a^{2}x
Scădeți a^{2}x din ambele părți.
-ba^{2}=-xa^{2}+c
Reordonați termenii.
\left(-a^{2}\right)b=c-xa^{2}
Ecuația este în forma standard.
\frac{\left(-a^{2}\right)b}{-a^{2}}=\frac{c-xa^{2}}{-a^{2}}
Se împart ambele părți la -a^{2}.
b=\frac{c-xa^{2}}{-a^{2}}
Împărțirea la -a^{2} anulează înmulțirea cu -a^{2}.
b=x-\frac{c}{a^{2}}
Împărțiți c-xa^{2} la -a^{2}.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}