Direct la conținutul principal
Rezolvați pentru B
Tick mark Image
Rezolvați pentru H
Tick mark Image

Probleme similare din căutarea web

Partajați

HB=\frac{1500}{1570\left(5-\sqrt{5^{2}-2295^{2}}\right)}
Înmulțiți 5 cu 314 pentru a obține 1570.
HB=\frac{1500}{1570\left(5-\sqrt{25-2295^{2}}\right)}
Calculați 5 la puterea 2 și obțineți 25.
HB=\frac{1500}{1570\left(5-\sqrt{25-5267025}\right)}
Calculați 2295 la puterea 2 și obțineți 5267025.
HB=\frac{1500}{1570\left(5-\sqrt{-5267000}\right)}
Scădeți 5267025 din 25 pentru a obține -5267000.
HB=\frac{1500}{1570\left(5-10i\sqrt{52670}\right)}
Descompuneți în factori -5267000=\left(10i\right)^{2}\times 52670. Rescrieți rădăcina pătrată a produsului \sqrt{\left(10i\right)^{2}\times 52670} ca produs a rădăcini pătrate \sqrt{\left(10i\right)^{2}}\sqrt{52670}. Aflați rădăcina pătrată pentru \left(10i\right)^{2}.
HB=\frac{1500}{7850-15700i\sqrt{52670}}
Utilizați proprietatea de distributivitate pentru a înmulți 1570 cu 5-10i\sqrt{52670}.
HB=\frac{1500\left(7850+15700i\sqrt{52670}\right)}{\left(7850-15700i\sqrt{52670}\right)\left(7850+15700i\sqrt{52670}\right)}
Raționalizați numitor de \frac{1500}{7850-15700i\sqrt{52670}} prin înmulțirea numărătorului și a numitorului de către 7850+15700i\sqrt{52670}.
HB=\frac{1500\left(7850+15700i\sqrt{52670}\right)}{7850^{2}-\left(-15700i\sqrt{52670}\right)^{2}}
Să luăm \left(7850-15700i\sqrt{52670}\right)\left(7850+15700i\sqrt{52670}\right). Înmulțirea poate fi transformată în diferența pătratelor, folosind regula: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
HB=\frac{1500\left(7850+15700i\sqrt{52670}\right)}{61622500-\left(-15700i\sqrt{52670}\right)^{2}}
Calculați 7850 la puterea 2 și obțineți 61622500.
HB=\frac{1500\left(7850+15700i\sqrt{52670}\right)}{61622500-\left(-15700i\right)^{2}\left(\sqrt{52670}\right)^{2}}
Extindeți \left(-15700i\sqrt{52670}\right)^{2}.
HB=\frac{1500\left(7850+15700i\sqrt{52670}\right)}{61622500-\left(-246490000\left(\sqrt{52670}\right)^{2}\right)}
Calculați -15700i la puterea 2 și obțineți -246490000.
HB=\frac{1500\left(7850+15700i\sqrt{52670}\right)}{61622500-\left(-246490000\times 52670\right)}
Pătratul lui \sqrt{52670} este 52670.
HB=\frac{1500\left(7850+15700i\sqrt{52670}\right)}{61622500-\left(-12982628300000\right)}
Înmulțiți -246490000 cu 52670 pentru a obține -12982628300000.
HB=\frac{1500\left(7850+15700i\sqrt{52670}\right)}{61622500+12982628300000}
Înmulțiți -1 cu -12982628300000 pentru a obține 12982628300000.
HB=\frac{1500\left(7850+15700i\sqrt{52670}\right)}{12982689922500}
Adunați 61622500 și 12982628300000 pentru a obține 12982689922500.
HB=\frac{1}{8655126615}\left(7850+15700i\sqrt{52670}\right)
Împărțiți 1500\left(7850+15700i\sqrt{52670}\right) la 12982689922500 pentru a obține \frac{1}{8655126615}\left(7850+15700i\sqrt{52670}\right).
HB=\frac{10}{11025639}+\frac{20}{11025639}i\sqrt{52670}
Utilizați proprietatea de distributivitate pentru a înmulți \frac{1}{8655126615} cu 7850+15700i\sqrt{52670}.
BH=\frac{10}{11025639}+\frac{20}{11025639}\sqrt{52670}i
Reordonați termenii.
HB=\frac{10+20\sqrt{52670}i}{11025639}
Ecuația este în forma standard.
\frac{HB}{H}=\frac{10+20\sqrt{52670}i}{11025639H}
Se împart ambele părți la H.
B=\frac{10+20\sqrt{52670}i}{11025639H}
Împărțirea la H anulează înmulțirea cu H.
B=\frac{10\left(1+2\sqrt{52670}i\right)}{11025639H}
Împărțiți \frac{10+20i\sqrt{52670}}{11025639} la H.
HB=\frac{1500}{1570\left(5-\sqrt{5^{2}-2295^{2}}\right)}
Înmulțiți 5 cu 314 pentru a obține 1570.
HB=\frac{1500}{1570\left(5-\sqrt{25-2295^{2}}\right)}
Calculați 5 la puterea 2 și obțineți 25.
HB=\frac{1500}{1570\left(5-\sqrt{25-5267025}\right)}
Calculați 2295 la puterea 2 și obțineți 5267025.
HB=\frac{1500}{1570\left(5-\sqrt{-5267000}\right)}
Scădeți 5267025 din 25 pentru a obține -5267000.
HB=\frac{1500}{1570\left(5-10i\sqrt{52670}\right)}
Descompuneți în factori -5267000=\left(10i\right)^{2}\times 52670. Rescrieți rădăcina pătrată a produsului \sqrt{\left(10i\right)^{2}\times 52670} ca produs a rădăcini pătrate \sqrt{\left(10i\right)^{2}}\sqrt{52670}. Aflați rădăcina pătrată pentru \left(10i\right)^{2}.
HB=\frac{1500}{7850-15700i\sqrt{52670}}
Utilizați proprietatea de distributivitate pentru a înmulți 1570 cu 5-10i\sqrt{52670}.
HB=\frac{1500\left(7850+15700i\sqrt{52670}\right)}{\left(7850-15700i\sqrt{52670}\right)\left(7850+15700i\sqrt{52670}\right)}
Raționalizați numitor de \frac{1500}{7850-15700i\sqrt{52670}} prin înmulțirea numărătorului și a numitorului de către 7850+15700i\sqrt{52670}.
HB=\frac{1500\left(7850+15700i\sqrt{52670}\right)}{7850^{2}-\left(-15700i\sqrt{52670}\right)^{2}}
Să luăm \left(7850-15700i\sqrt{52670}\right)\left(7850+15700i\sqrt{52670}\right). Înmulțirea poate fi transformată în diferența pătratelor, folosind regula: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
HB=\frac{1500\left(7850+15700i\sqrt{52670}\right)}{61622500-\left(-15700i\sqrt{52670}\right)^{2}}
Calculați 7850 la puterea 2 și obțineți 61622500.
HB=\frac{1500\left(7850+15700i\sqrt{52670}\right)}{61622500-\left(-15700i\right)^{2}\left(\sqrt{52670}\right)^{2}}
Extindeți \left(-15700i\sqrt{52670}\right)^{2}.
HB=\frac{1500\left(7850+15700i\sqrt{52670}\right)}{61622500-\left(-246490000\left(\sqrt{52670}\right)^{2}\right)}
Calculați -15700i la puterea 2 și obțineți -246490000.
HB=\frac{1500\left(7850+15700i\sqrt{52670}\right)}{61622500-\left(-246490000\times 52670\right)}
Pătratul lui \sqrt{52670} este 52670.
HB=\frac{1500\left(7850+15700i\sqrt{52670}\right)}{61622500-\left(-12982628300000\right)}
Înmulțiți -246490000 cu 52670 pentru a obține -12982628300000.
HB=\frac{1500\left(7850+15700i\sqrt{52670}\right)}{61622500+12982628300000}
Înmulțiți -1 cu -12982628300000 pentru a obține 12982628300000.
HB=\frac{1500\left(7850+15700i\sqrt{52670}\right)}{12982689922500}
Adunați 61622500 și 12982628300000 pentru a obține 12982689922500.
HB=\frac{1}{8655126615}\left(7850+15700i\sqrt{52670}\right)
Împărțiți 1500\left(7850+15700i\sqrt{52670}\right) la 12982689922500 pentru a obține \frac{1}{8655126615}\left(7850+15700i\sqrt{52670}\right).
HB=\frac{10}{11025639}+\frac{20}{11025639}i\sqrt{52670}
Utilizați proprietatea de distributivitate pentru a înmulți \frac{1}{8655126615} cu 7850+15700i\sqrt{52670}.
BH=\frac{10}{11025639}+\frac{20}{11025639}\sqrt{52670}i
Reordonați termenii.
BH=\frac{10+20\sqrt{52670}i}{11025639}
Ecuația este în forma standard.
\frac{BH}{B}=\frac{10+20\sqrt{52670}i}{11025639B}
Se împart ambele părți la B.
H=\frac{10+20\sqrt{52670}i}{11025639B}
Împărțirea la B anulează înmulțirea cu B.
H=\frac{10\left(1+2\sqrt{52670}i\right)}{11025639B}
Împărțiți \frac{10+20i\sqrt{52670}}{11025639} la B.