Descompunere în factori
9t\left(t-8\right)\left(t-2\right)
Evaluați
9t\left(t-8\right)\left(t-2\right)
Partajați
Copiat în clipboard
9\left(t^{3}-10t^{2}+16t\right)
Scoateți factorul comun 9.
t\left(t^{2}-10t+16\right)
Să luăm t^{3}-10t^{2}+16t. Scoateți factorul comun t.
a+b=-10 ab=1\times 16=16
Să luăm t^{2}-10t+16. Descompuneți expresia în factori prin grupare. Mai întâi, expresia trebuie să fie rescrisă ca t^{2}+at+bt+16. Pentru a găsi a și b, configurați un sistem pentru a fi rezolvat.
-1,-16 -2,-8 -4,-4
Deoarece ab este pozitiv, a și b au același semn. Deoarece a+b este negativ, a și b sunt negative. Listează toate perechi de valori întregi care oferă produse 16.
-1-16=-17 -2-8=-10 -4-4=-8
Calculați suma pentru fiecare pereche.
a=-8 b=-2
Soluția este perechea care dă suma de -10.
\left(t^{2}-8t\right)+\left(-2t+16\right)
Rescrieți t^{2}-10t+16 ca \left(t^{2}-8t\right)+\left(-2t+16\right).
t\left(t-8\right)-2\left(t-8\right)
Factor t în primul și -2 în al doilea grup.
\left(t-8\right)\left(t-2\right)
Scoateți termenul comun t-8 prin utilizarea proprietății de distributivitate.
9t\left(t-8\right)\left(t-2\right)
Rescrieți expresia completă descompusă în factori.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}