Descompunere în factori
\left(2x-3\right)\left(3x+1\right)
Evaluați
\left(2x-3\right)\left(3x+1\right)
Grafic
Partajați
Copiat în clipboard
a+b=-7 ab=6\left(-3\right)=-18
Descompuneți expresia în factori prin grupare. Mai întâi, expresia trebuie să fie rescrisă ca 6x^{2}+ax+bx-3. Pentru a găsi a și b, configurați un sistem pentru a fi rezolvat.
1,-18 2,-9 3,-6
Deoarece ab este negativ, a și b au semne opuse. Deoarece a+b este negativ, numărul negativ are o valoare absolută mai mare decât valoarea pozitivă. Listează toate perechi de valori întregi care oferă produse -18.
1-18=-17 2-9=-7 3-6=-3
Calculați suma pentru fiecare pereche.
a=-9 b=2
Soluția este perechea care dă suma de -7.
\left(6x^{2}-9x\right)+\left(2x-3\right)
Rescrieți 6x^{2}-7x-3 ca \left(6x^{2}-9x\right)+\left(2x-3\right).
3x\left(2x-3\right)+2x-3
Scoateți factorul comun 3x din 6x^{2}-9x.
\left(2x-3\right)\left(3x+1\right)
Scoateți termenul comun 2x-3 prin utilizarea proprietății de distributivitate.
6x^{2}-7x-3=0
Polinomul de gradul doi se poate descompune în factori folosind transformarea ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), unde x_{1} și x_{2} sunt soluțiile ecuației de gradul doi ax^{2}+bx+c=0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6\left(-3\right)}}{2\times 6}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate utilizând formula rădăcinilor ecuației de gradul al doilea: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula rădăcinilor ecuației de gradul al doilea oferă două soluții, una atunci când operația ± este de adunare și una atunci când este de scădere.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 6\left(-3\right)}}{2\times 6}
Ridicați -7 la pătrat.
x=\frac{-\left(-7\right)±\sqrt{49-24\left(-3\right)}}{2\times 6}
Înmulțiți -4 cu 6.
x=\frac{-\left(-7\right)±\sqrt{49+72}}{2\times 6}
Înmulțiți -24 cu -3.
x=\frac{-\left(-7\right)±\sqrt{121}}{2\times 6}
Adunați 49 cu 72.
x=\frac{-\left(-7\right)±11}{2\times 6}
Aflați rădăcina pătrată pentru 121.
x=\frac{7±11}{2\times 6}
Opusul lui -7 este 7.
x=\frac{7±11}{12}
Înmulțiți 2 cu 6.
x=\frac{18}{12}
Acum rezolvați ecuația x=\frac{7±11}{12} atunci când ± este plus. Adunați 7 cu 11.
x=\frac{3}{2}
Reduceți fracția \frac{18}{12} la cei mai mici termeni, prin extragerea și reducerea 6.
x=-\frac{4}{12}
Acum rezolvați ecuația x=\frac{7±11}{12} atunci când ± este minus. Scădeți 11 din 7.
x=-\frac{1}{3}
Reduceți fracția \frac{-4}{12} la cei mai mici termeni, prin extragerea și reducerea 4.
6x^{2}-7x-3=6\left(x-\frac{3}{2}\right)\left(x-\left(-\frac{1}{3}\right)\right)
Descompuneți în factori expresia inițială utilizând ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Înlocuiți x_{1} cu \frac{3}{2} și x_{2} cu -\frac{1}{3}.
6x^{2}-7x-3=6\left(x-\frac{3}{2}\right)\left(x+\frac{1}{3}\right)
Simplificați toate expresiile formei p-\left(-q\right) la p+q.
6x^{2}-7x-3=6\times \frac{2x-3}{2}\left(x+\frac{1}{3}\right)
Scădeți \frac{3}{2} din x găsind un numitor comun și scăzând numărătorii. Apoi simplificați fracția până devine ireductibilă, dacă este posibil.
6x^{2}-7x-3=6\times \frac{2x-3}{2}\times \frac{3x+1}{3}
Adunați \frac{1}{3} cu x găsind un numitor comun și adunând numărătorii. Apoi simplificați fracția până devine ireductibilă, dacă este posibil.
6x^{2}-7x-3=6\times \frac{\left(2x-3\right)\left(3x+1\right)}{2\times 3}
Înmulțiți \frac{2x-3}{2} cu \frac{3x+1}{3} prin înmulțirea valorilor de la numărător și a valorilor de la numitor. Apoi simplificați fracția până devine ireductibilă, dacă este posibil.
6x^{2}-7x-3=6\times \frac{\left(2x-3\right)\left(3x+1\right)}{6}
Înmulțiți 2 cu 3.
6x^{2}-7x-3=\left(2x-3\right)\left(3x+1\right)
Simplificați cu 6, cel mai mare factor comun din 6 și 6.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}