Direct la conținutul principal
Descompunere în factori
Tick mark Image
Evaluați
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

5\left(x^{2}-4x\right)
Scoateți factorul comun 5.
x\left(x-4\right)
Să luăm x^{2}-4x. Scoateți factorul comun x.
5x\left(x-4\right)
Rescrieți expresia completă descompusă în factori.
5x^{2}-20x=0
Polinomul de gradul doi se poate descompune în factori folosind transformarea ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), unde x_{1} și x_{2} sunt soluțiile ecuației de gradul doi ax^{2}+bx+c=0.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}}}{2\times 5}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate utilizând formula rădăcinilor ecuației de gradul al doilea: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula rădăcinilor ecuației de gradul al doilea oferă două soluții, una atunci când operația ± este de adunare și una atunci când este de scădere.
x=\frac{-\left(-20\right)±20}{2\times 5}
Aflați rădăcina pătrată pentru \left(-20\right)^{2}.
x=\frac{20±20}{2\times 5}
Opusul lui -20 este 20.
x=\frac{20±20}{10}
Înmulțiți 2 cu 5.
x=\frac{40}{10}
Acum rezolvați ecuația x=\frac{20±20}{10} atunci când ± este plus. Adunați 20 cu 20.
x=4
Împărțiți 40 la 10.
x=\frac{0}{10}
Acum rezolvați ecuația x=\frac{20±20}{10} atunci când ± este minus. Scădeți 20 din 20.
x=0
Împărțiți 0 la 10.
5x^{2}-20x=5\left(x-4\right)x
Descompuneți în factori expresia inițială utilizând ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Înlocuiți x_{1} cu 4 și x_{2} cu 0.