Direct la conținutul principal
Rezolvați pentru x (complex solution)
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

5x^{2}+2x+8=0
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate utilizând formula rădăcinilor ecuației de gradul al doilea: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula rădăcinilor ecuației de gradul al doilea oferă două soluții, una atunci când operația ± este de adunare și una atunci când este de scădere.
x=\frac{-2±\sqrt{2^{2}-4\times 5\times 8}}{2\times 5}
Această ecuație este în formă standard: ax^{2}+bx+c=0. Înlocuiți a cu 5, b cu 2 și c cu 8 în formula rădăcinilor ecuațiilor de gradul al doilea, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 5\times 8}}{2\times 5}
Ridicați 2 la pătrat.
x=\frac{-2±\sqrt{4-20\times 8}}{2\times 5}
Înmulțiți -4 cu 5.
x=\frac{-2±\sqrt{4-160}}{2\times 5}
Înmulțiți -20 cu 8.
x=\frac{-2±\sqrt{-156}}{2\times 5}
Adunați 4 cu -160.
x=\frac{-2±2\sqrt{39}i}{2\times 5}
Aflați rădăcina pătrată pentru -156.
x=\frac{-2±2\sqrt{39}i}{10}
Înmulțiți 2 cu 5.
x=\frac{-2+2\sqrt{39}i}{10}
Acum rezolvați ecuația x=\frac{-2±2\sqrt{39}i}{10} atunci când ± este plus. Adunați -2 cu 2i\sqrt{39}.
x=\frac{-1+\sqrt{39}i}{5}
Împărțiți -2+2i\sqrt{39} la 10.
x=\frac{-2\sqrt{39}i-2}{10}
Acum rezolvați ecuația x=\frac{-2±2\sqrt{39}i}{10} atunci când ± este minus. Scădeți 2i\sqrt{39} din -2.
x=\frac{-\sqrt{39}i-1}{5}
Împărțiți -2-2i\sqrt{39} la 10.
x=\frac{-1+\sqrt{39}i}{5} x=\frac{-\sqrt{39}i-1}{5}
Ecuația este rezolvată acum.
5x^{2}+2x+8=0
Ecuațiile de gradul doi ca aceasta pot fi rezolvate prin completarea pătratului. Pentru a completa pătratul, ecuația trebuie mai întâi să fie sub forma x^{2}+bx=c.
5x^{2}+2x+8-8=-8
Scădeți 8 din ambele părți ale ecuației.
5x^{2}+2x=-8
Scăderea 8 din el însuși are ca rezultat 0.
\frac{5x^{2}+2x}{5}=-\frac{8}{5}
Se împart ambele părți la 5.
x^{2}+\frac{2}{5}x=-\frac{8}{5}
Împărțirea la 5 anulează înmulțirea cu 5.
x^{2}+\frac{2}{5}x+\left(\frac{1}{5}\right)^{2}=-\frac{8}{5}+\left(\frac{1}{5}\right)^{2}
Împărțiți \frac{2}{5}, coeficientul termenului x, la 2 pentru a obține \frac{1}{5}. Apoi, adunați pătratul lui \frac{1}{5} la ambele părți ale ecuației. Acest pas face din partea stângă a ecuației un pătrat perfect.
x^{2}+\frac{2}{5}x+\frac{1}{25}=-\frac{8}{5}+\frac{1}{25}
Ridicați \frac{1}{5} la pătrat, calculând pătratul pentru numărătorul și numitorul fracției.
x^{2}+\frac{2}{5}x+\frac{1}{25}=-\frac{39}{25}
Adunați -\frac{8}{5} cu \frac{1}{25} găsind un numitor comun și adunând numărătorii. Apoi simplificați fracția până devine ireductibilă, dacă este posibil.
\left(x+\frac{1}{5}\right)^{2}=-\frac{39}{25}
Factor x^{2}+\frac{2}{5}x+\frac{1}{25}. În general, atunci când x^{2}+bx+c este un pătrat perfect, el poate fi descompus în factori oricând ca \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{5}\right)^{2}}=\sqrt{-\frac{39}{25}}
Aflați rădăcina pătrată pentru ambele părți ale ecuației.
x+\frac{1}{5}=\frac{\sqrt{39}i}{5} x+\frac{1}{5}=-\frac{\sqrt{39}i}{5}
Simplificați.
x=\frac{-1+\sqrt{39}i}{5} x=\frac{-\sqrt{39}i-1}{5}
Scădeți \frac{1}{5} din ambele părți ale ecuației.