Direct la conținutul principal
Descompunere în factori
Tick mark Image
Evaluați
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

4\left(x^{3}+x^{2}-12x\right)
Scoateți factorul comun 4.
x\left(x^{2}+x-12\right)
Să luăm x^{3}+x^{2}-12x. Scoateți factorul comun x.
a+b=1 ab=1\left(-12\right)=-12
Să luăm x^{2}+x-12. Descompuneți expresia în factori prin grupare. Mai întâi, expresia trebuie să fie rescrisă ca x^{2}+ax+bx-12. Pentru a găsi a și b, configurați un sistem pentru a fi rezolvat.
-1,12 -2,6 -3,4
Deoarece ab este negativ, a și b au semne opuse. Deoarece a+b este pozitiv, numărul pozitiv are o valoare absolută mai mare decât valoarea negativă. Listează toate perechi de valori întregi care oferă produse -12.
-1+12=11 -2+6=4 -3+4=1
Calculați suma pentru fiecare pereche.
a=-3 b=4
Soluția este perechea care dă suma de 1.
\left(x^{2}-3x\right)+\left(4x-12\right)
Rescrieți x^{2}+x-12 ca \left(x^{2}-3x\right)+\left(4x-12\right).
x\left(x-3\right)+4\left(x-3\right)
Factor x în primul și 4 în al doilea grup.
\left(x-3\right)\left(x+4\right)
Scoateți termenul comun x-3 prin utilizarea proprietății de distributivitate.
4x\left(x-3\right)\left(x+4\right)
Rescrieți expresia completă descompusă în factori.