Direct la conținutul principal
Descompunere în factori
Tick mark Image
Evaluați
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

a+b=-1 ab=4\left(-3\right)=-12
Descompuneți expresia în factori prin grupare. Mai întâi, expresia trebuie să fie rescrisă ca 4x^{2}+ax+bx-3. Pentru a găsi a și b, configurați un sistem pentru a fi rezolvat.
1,-12 2,-6 3,-4
Deoarece ab este negativ, a și b au semne opuse. Deoarece a+b este negativ, numărul negativ are o valoare absolută mai mare decât valoarea pozitivă. Listează toate perechi de valori întregi care oferă produse -12.
1-12=-11 2-6=-4 3-4=-1
Calculați suma pentru fiecare pereche.
a=-4 b=3
Soluția este perechea care dă suma de -1.
\left(4x^{2}-4x\right)+\left(3x-3\right)
Rescrieți 4x^{2}-x-3 ca \left(4x^{2}-4x\right)+\left(3x-3\right).
4x\left(x-1\right)+3\left(x-1\right)
Factor 4x în primul și 3 în al doilea grup.
\left(x-1\right)\left(4x+3\right)
Scoateți termenul comun x-1 prin utilizarea proprietății de distributivitate.
4x^{2}-x-3=0
Polinomul de gradul doi se poate descompune în factori folosind transformarea ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), unde x_{1} și x_{2} sunt soluțiile ecuației de gradul doi ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 4\left(-3\right)}}{2\times 4}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate utilizând formula rădăcinilor ecuației de gradul al doilea: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula rădăcinilor ecuației de gradul al doilea oferă două soluții, una atunci când operația ± este de adunare și una atunci când este de scădere.
x=\frac{-\left(-1\right)±\sqrt{1-16\left(-3\right)}}{2\times 4}
Înmulțiți -4 cu 4.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 4}
Înmulțiți -16 cu -3.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 4}
Adunați 1 cu 48.
x=\frac{-\left(-1\right)±7}{2\times 4}
Aflați rădăcina pătrată pentru 49.
x=\frac{1±7}{2\times 4}
Opusul lui -1 este 1.
x=\frac{1±7}{8}
Înmulțiți 2 cu 4.
x=\frac{8}{8}
Acum rezolvați ecuația x=\frac{1±7}{8} atunci când ± este plus. Adunați 1 cu 7.
x=1
Împărțiți 8 la 8.
x=-\frac{6}{8}
Acum rezolvați ecuația x=\frac{1±7}{8} atunci când ± este minus. Scădeți 7 din 1.
x=-\frac{3}{4}
Reduceți fracția \frac{-6}{8} la cei mai mici termeni, prin extragerea și reducerea 2.
4x^{2}-x-3=4\left(x-1\right)\left(x-\left(-\frac{3}{4}\right)\right)
Descompuneți în factori expresia inițială utilizând ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Înlocuiți x_{1} cu 1 și x_{2} cu -\frac{3}{4}.
4x^{2}-x-3=4\left(x-1\right)\left(x+\frac{3}{4}\right)
Simplificați toate expresiile formei p-\left(-q\right) la p+q.
4x^{2}-x-3=4\left(x-1\right)\times \frac{4x+3}{4}
Adunați \frac{3}{4} cu x găsind un numitor comun și adunând numărătorii. Apoi simplificați fracția până devine ireductibilă, dacă este posibil.
4x^{2}-x-3=\left(x-1\right)\left(4x+3\right)
Simplificați cu 4, cel mai mare factor comun din 4 și 4.