Evaluați
\frac{9x^{2}+12x+8}{3x+2}
Calculați derivata în funcție de x
\frac{9x\left(3x+4\right)}{\left(3x+2\right)^{2}}
Grafic
Partajați
Copiat în clipboard
\frac{\left(3x+2\right)\left(3x+2\right)}{3x+2}+\frac{4}{3x+2}
Pentru a adăuga sau a scădea expresii, extindeți-le pentru a face identici numitorii lor. Înmulțiți 3x+2 cu \frac{3x+2}{3x+2}.
\frac{\left(3x+2\right)\left(3x+2\right)+4}{3x+2}
Deoarece \frac{\left(3x+2\right)\left(3x+2\right)}{3x+2} și \frac{4}{3x+2} au același numitor comun, adunați-le adunând numărătorii lor.
\frac{9x^{2}+6x+6x+4+4}{3x+2}
Faceți înmulțiri în \left(3x+2\right)\left(3x+2\right)+4.
\frac{9x^{2}+12x+8}{3x+2}
Combinați termeni similari în 9x^{2}+6x+6x+4+4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(3x+2\right)\left(3x+2\right)}{3x+2}+\frac{4}{3x+2})
Pentru a adăuga sau a scădea expresii, extindeți-le pentru a face identici numitorii lor. Înmulțiți 3x+2 cu \frac{3x+2}{3x+2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(3x+2\right)\left(3x+2\right)+4}{3x+2})
Deoarece \frac{\left(3x+2\right)\left(3x+2\right)}{3x+2} și \frac{4}{3x+2} au același numitor comun, adunați-le adunând numărătorii lor.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{9x^{2}+6x+6x+4+4}{3x+2})
Faceți înmulțiri în \left(3x+2\right)\left(3x+2\right)+4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{9x^{2}+12x+8}{3x+2})
Combinați termeni similari în 9x^{2}+6x+6x+4+4.
\frac{\left(3x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(9x^{2}+12x^{1}+8)-\left(9x^{2}+12x^{1}+8\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}+2)}{\left(3x^{1}+2\right)^{2}}
Pentru orice două funcții diferențiabile, derivata câtului celor două funcții este numitorul înmulțit cu derivata numărătorului, minus numărătorul înmulțit cu derivata numitorului, totul împărțit la numitorul la pătrat.
\frac{\left(3x^{1}+2\right)\left(2\times 9x^{2-1}+12x^{1-1}\right)-\left(9x^{2}+12x^{1}+8\right)\times 3x^{1-1}}{\left(3x^{1}+2\right)^{2}}
Derivata unui polinom este suma derivatelor termenilor săi. Derivata unui termen constant este 0. Derivata lui ax^{n} este nax^{n-1}.
\frac{\left(3x^{1}+2\right)\left(18x^{1}+12x^{0}\right)-\left(9x^{2}+12x^{1}+8\right)\times 3x^{0}}{\left(3x^{1}+2\right)^{2}}
Simplificați.
\frac{3x^{1}\times 18x^{1}+3x^{1}\times 12x^{0}+2\times 18x^{1}+2\times 12x^{0}-\left(9x^{2}+12x^{1}+8\right)\times 3x^{0}}{\left(3x^{1}+2\right)^{2}}
Înmulțiți 3x^{1}+2 cu 18x^{1}+12x^{0}.
\frac{3x^{1}\times 18x^{1}+3x^{1}\times 12x^{0}+2\times 18x^{1}+2\times 12x^{0}-\left(9x^{2}\times 3x^{0}+12x^{1}\times 3x^{0}+8\times 3x^{0}\right)}{\left(3x^{1}+2\right)^{2}}
Înmulțiți 9x^{2}+12x^{1}+8 cu 3x^{0}.
\frac{3\times 18x^{1+1}+3\times 12x^{1}+2\times 18x^{1}+2\times 12x^{0}-\left(9\times 3x^{2}+12\times 3x^{1}+8\times 3x^{0}\right)}{\left(3x^{1}+2\right)^{2}}
Pentru a înmulți puterile cu aceleași baze, adunați exponenții lor.
\frac{54x^{2}+36x^{1}+36x^{1}+24x^{0}-\left(27x^{2}+36x^{1}+24x^{0}\right)}{\left(3x^{1}+2\right)^{2}}
Simplificați.
\frac{27x^{2}+36x^{1}}{\left(3x^{1}+2\right)^{2}}
Combinați termenii asemenea.
\frac{27x^{2}+36x}{\left(3x+2\right)^{2}}
Pentru orice termen t, t^{1}=t.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}