Descompunere în factori
3a\left(x-4\right)\left(x+1\right)
Evaluați
3a\left(x-4\right)\left(x+1\right)
Grafic
Partajați
Copiat în clipboard
3\left(ax^{2}-3ax-4a\right)
Scoateți factorul comun 3.
a\left(x^{2}-3x-4\right)
Să luăm ax^{2}-3ax-4a. Scoateți factorul comun a.
p+q=-3 pq=1\left(-4\right)=-4
Să luăm x^{2}-3x-4. Descompuneți expresia în factori prin grupare. Mai întâi, expresia trebuie să fie rescrisă ca x^{2}+px+qx-4. Pentru a găsi p și q, configurați un sistem pentru a fi rezolvat.
1,-4 2,-2
Deoarece pq este negativ, p și q au semne opuse. Deoarece p+q este negativ, numărul negativ are o valoare absolută mai mare decât valoarea pozitivă. Listează toate perechi de valori întregi care oferă produse -4.
1-4=-3 2-2=0
Calculați suma pentru fiecare pereche.
p=-4 q=1
Soluția este perechea care dă suma de -3.
\left(x^{2}-4x\right)+\left(x-4\right)
Rescrieți x^{2}-3x-4 ca \left(x^{2}-4x\right)+\left(x-4\right).
x\left(x-4\right)+x-4
Scoateți factorul comun x din x^{2}-4x.
\left(x-4\right)\left(x+1\right)
Scoateți termenul comun x-4 prin utilizarea proprietății de distributivitate.
3a\left(x-4\right)\left(x+1\right)
Rescrieți expresia completă descompusă în factori.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}