Direct la conținutul principal
Descompunere în factori
Tick mark Image
Evaluați
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

a+b=5 ab=2\left(-3\right)=-6
Descompuneți expresia în factori prin grupare. Mai întâi, expresia trebuie să fie rescrisă ca 2x^{2}+ax+bx-3. Pentru a găsi a și b, configurați un sistem pentru a fi rezolvat.
-1,6 -2,3
Deoarece ab este negativ, a și b au semne opuse. Deoarece a+b este pozitiv, numărul pozitiv are o valoare absolută mai mare decât valoarea negativă. Listează toate perechi de valori întregi care oferă produse -6.
-1+6=5 -2+3=1
Calculați suma pentru fiecare pereche.
a=-1 b=6
Soluția este perechea care dă suma de 5.
\left(2x^{2}-x\right)+\left(6x-3\right)
Rescrieți 2x^{2}+5x-3 ca \left(2x^{2}-x\right)+\left(6x-3\right).
x\left(2x-1\right)+3\left(2x-1\right)
Factor x în primul și 3 în al doilea grup.
\left(2x-1\right)\left(x+3\right)
Scoateți termenul comun 2x-1 prin utilizarea proprietății de distributivitate.
2x^{2}+5x-3=0
Polinomul de gradul doi se poate descompune în factori folosind transformarea ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), unde x_{1} și x_{2} sunt soluțiile ecuației de gradul doi ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\times 2\left(-3\right)}}{2\times 2}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate utilizând formula rădăcinilor ecuației de gradul al doilea: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula rădăcinilor ecuației de gradul al doilea oferă două soluții, una atunci când operația ± este de adunare și una atunci când este de scădere.
x=\frac{-5±\sqrt{25-4\times 2\left(-3\right)}}{2\times 2}
Ridicați 5 la pătrat.
x=\frac{-5±\sqrt{25-8\left(-3\right)}}{2\times 2}
Înmulțiți -4 cu 2.
x=\frac{-5±\sqrt{25+24}}{2\times 2}
Înmulțiți -8 cu -3.
x=\frac{-5±\sqrt{49}}{2\times 2}
Adunați 25 cu 24.
x=\frac{-5±7}{2\times 2}
Aflați rădăcina pătrată pentru 49.
x=\frac{-5±7}{4}
Înmulțiți 2 cu 2.
x=\frac{2}{4}
Acum rezolvați ecuația x=\frac{-5±7}{4} atunci când ± este plus. Adunați -5 cu 7.
x=\frac{1}{2}
Reduceți fracția \frac{2}{4} la cei mai mici termeni, prin extragerea și reducerea 2.
x=-\frac{12}{4}
Acum rezolvați ecuația x=\frac{-5±7}{4} atunci când ± este minus. Scădeți 7 din -5.
x=-3
Împărțiți -12 la 4.
2x^{2}+5x-3=2\left(x-\frac{1}{2}\right)\left(x-\left(-3\right)\right)
Descompuneți în factori expresia inițială utilizând ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Înlocuiți x_{1} cu \frac{1}{2} și x_{2} cu -3.
2x^{2}+5x-3=2\left(x-\frac{1}{2}\right)\left(x+3\right)
Simplificați toate expresiile formei p-\left(-q\right) la p+q.
2x^{2}+5x-3=2\times \frac{2x-1}{2}\left(x+3\right)
Scădeți \frac{1}{2} din x găsind un numitor comun și scăzând numărătorii. Apoi simplificați fracția până devine ireductibilă, dacă este posibil.
2x^{2}+5x-3=\left(2x-1\right)\left(x+3\right)
Simplificați cu 2, cel mai mare factor comun din 2 și 2.