Direct la conținutul principal
Descompunere în factori
Tick mark Image
Evaluați
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

x\left(2x+5\right)
Scoateți factorul comun x.
2x^{2}+5x=0
Polinomul de gradul doi se poate descompune în factori folosind transformarea ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), unde x_{1} și x_{2} sunt soluțiile ecuației de gradul doi ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}}}{2\times 2}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate utilizând formula rădăcinilor ecuației de gradul al doilea: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula rădăcinilor ecuației de gradul al doilea oferă două soluții, una atunci când operația ± este de adunare și una atunci când este de scădere.
x=\frac{-5±5}{2\times 2}
Aflați rădăcina pătrată pentru 5^{2}.
x=\frac{-5±5}{4}
Înmulțiți 2 cu 2.
x=\frac{0}{4}
Acum rezolvați ecuația x=\frac{-5±5}{4} atunci când ± este plus. Adunați -5 cu 5.
x=0
Împărțiți 0 la 4.
x=-\frac{10}{4}
Acum rezolvați ecuația x=\frac{-5±5}{4} atunci când ± este minus. Scădeți 5 din -5.
x=-\frac{5}{2}
Reduceți fracția \frac{-10}{4} la cei mai mici termeni, prin extragerea și reducerea 2.
2x^{2}+5x=2x\left(x-\left(-\frac{5}{2}\right)\right)
Descompuneți în factori expresia inițială utilizând ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Înlocuiți x_{1} cu 0 și x_{2} cu -\frac{5}{2}.
2x^{2}+5x=2x\left(x+\frac{5}{2}\right)
Simplificați toate expresiile formei p-\left(-q\right) la p+q.
2x^{2}+5x=2x\times \frac{2x+5}{2}
Adunați \frac{5}{2} cu x găsind un numitor comun și adunând numărătorii. Apoi simplificați fracția până devine ireductibilă, dacă este posibil.
2x^{2}+5x=x\left(2x+5\right)
Simplificați cu 2, cel mai mare factor comun din 2 și 2.