Rezolvați pentru w
w=\frac{70}{4x+1}
x\neq -\frac{1}{4}
Rezolvați pentru x
x=-\frac{1}{4}+\frac{35}{2w}
w\neq 0
Grafic
Partajați
Copiat în clipboard
8xw+2w=140
Înmulțiți 2 cu 4 pentru a obține 8.
\left(8x+2\right)w=140
Combinați toți termenii care conțin w.
\frac{\left(8x+2\right)w}{8x+2}=\frac{140}{8x+2}
Se împart ambele părți la 8x+2.
w=\frac{140}{8x+2}
Împărțirea la 8x+2 anulează înmulțirea cu 8x+2.
w=\frac{70}{4x+1}
Împărțiți 140 la 8x+2.
8xw+2w=140
Înmulțiți 2 cu 4 pentru a obține 8.
8xw=140-2w
Scădeți 2w din ambele părți.
8wx=140-2w
Ecuația este în forma standard.
\frac{8wx}{8w}=\frac{140-2w}{8w}
Se împart ambele părți la 8w.
x=\frac{140-2w}{8w}
Împărțirea la 8w anulează înmulțirea cu 8w.
x=-\frac{1}{4}+\frac{35}{2w}
Împărțiți 140-2w la 8w.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}