Direct la conținutul principal
Descompunere în factori
Tick mark Image
Evaluați
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

5\left(3x^{2}+x\right)
Scoateți factorul comun 5.
x\left(3x+1\right)
Să luăm 3x^{2}+x. Scoateți factorul comun x.
5x\left(3x+1\right)
Rescrieți expresia completă descompusă în factori.
15x^{2}+5x=0
Polinomul de gradul doi se poate descompune în factori folosind transformarea ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), unde x_{1} și x_{2} sunt soluțiile ecuației de gradul doi ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}}}{2\times 15}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate utilizând formula rădăcinilor ecuației de gradul al doilea: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula rădăcinilor ecuației de gradul al doilea oferă două soluții, una atunci când operația ± este de adunare și una atunci când este de scădere.
x=\frac{-5±5}{2\times 15}
Aflați rădăcina pătrată pentru 5^{2}.
x=\frac{-5±5}{30}
Înmulțiți 2 cu 15.
x=\frac{0}{30}
Acum rezolvați ecuația x=\frac{-5±5}{30} atunci când ± este plus. Adunați -5 cu 5.
x=0
Împărțiți 0 la 30.
x=-\frac{10}{30}
Acum rezolvați ecuația x=\frac{-5±5}{30} atunci când ± este minus. Scădeți 5 din -5.
x=-\frac{1}{3}
Reduceți fracția \frac{-10}{30} la cei mai mici termeni, prin extragerea și reducerea 10.
15x^{2}+5x=15x\left(x-\left(-\frac{1}{3}\right)\right)
Descompuneți în factori expresia inițială utilizând ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Înlocuiți x_{1} cu 0 și x_{2} cu -\frac{1}{3}.
15x^{2}+5x=15x\left(x+\frac{1}{3}\right)
Simplificați toate expresiile formei p-\left(-q\right) la p+q.
15x^{2}+5x=15x\times \frac{3x+1}{3}
Adunați \frac{1}{3} cu x găsind un numitor comun și adunând numărătorii. Apoi simplificați fracția până devine ireductibilă, dacă este posibil.
15x^{2}+5x=5x\left(3x+1\right)
Simplificați cu 3, cel mai mare factor comun din 15 și 3.