Rezolvați pentru x
x\leq -\frac{44}{15}
Grafic
Partajați
Copiat în clipboard
12\left(x+5\right)\leq \frac{4}{5}\times 31
Se înmulțesc ambele părți cu 31. Deoarece 31 este pozitiv, direcția inegalitatea rămâne aceeași.
12x+60\leq \frac{4}{5}\times 31
Utilizați proprietatea de distributivitate pentru a înmulți 12 cu x+5.
12x+60\leq \frac{4\times 31}{5}
Exprimați \frac{4}{5}\times 31 ca fracție unică.
12x+60\leq \frac{124}{5}
Înmulțiți 4 cu 31 pentru a obține 124.
12x\leq \frac{124}{5}-60
Scădeți 60 din ambele părți.
12x\leq \frac{124}{5}-\frac{300}{5}
Efectuați conversia 60 la fracția \frac{300}{5}.
12x\leq \frac{124-300}{5}
Deoarece \frac{124}{5} și \frac{300}{5} au același numitor comun, scădeți-le scăzând numărătorii lor.
12x\leq -\frac{176}{5}
Scădeți 300 din 124 pentru a obține -176.
x\leq \frac{-\frac{176}{5}}{12}
Se împart ambele părți la 12. Deoarece 12 este pozitiv, direcția inegalitatea rămâne aceeași.
x\leq \frac{-176}{5\times 12}
Exprimați \frac{-\frac{176}{5}}{12} ca fracție unică.
x\leq \frac{-176}{60}
Înmulțiți 5 cu 12 pentru a obține 60.
x\leq -\frac{44}{15}
Reduceți fracția \frac{-176}{60} la cei mai mici termeni, prin extragerea și reducerea 4.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}