Direct la conținutul principal
Rezolvați pentru x
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

10x^{2}=633-3
Scădeți 3 din ambele părți.
10x^{2}=630
Scădeți 3 din 633 pentru a obține 630.
x^{2}=\frac{630}{10}
Se împart ambele părți la 10.
x^{2}=63
Împărțiți 630 la 10 pentru a obține 63.
x=3\sqrt{7} x=-3\sqrt{7}
Aflați rădăcina pătrată pentru ambele părți ale ecuației.
10x^{2}+3-633=0
Scădeți 633 din ambele părți.
10x^{2}-630=0
Scădeți 633 din 3 pentru a obține -630.
x=\frac{0±\sqrt{0^{2}-4\times 10\left(-630\right)}}{2\times 10}
Această ecuație este în formă standard: ax^{2}+bx+c=0. Înlocuiți a cu 10, b cu 0 și c cu -630 în formula rădăcinilor ecuațiilor de gradul al doilea, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 10\left(-630\right)}}{2\times 10}
Ridicați 0 la pătrat.
x=\frac{0±\sqrt{-40\left(-630\right)}}{2\times 10}
Înmulțiți -4 cu 10.
x=\frac{0±\sqrt{25200}}{2\times 10}
Înmulțiți -40 cu -630.
x=\frac{0±60\sqrt{7}}{2\times 10}
Aflați rădăcina pătrată pentru 25200.
x=\frac{0±60\sqrt{7}}{20}
Înmulțiți 2 cu 10.
x=3\sqrt{7}
Acum rezolvați ecuația x=\frac{0±60\sqrt{7}}{20} atunci când ± este plus.
x=-3\sqrt{7}
Acum rezolvați ecuația x=\frac{0±60\sqrt{7}}{20} atunci când ± este minus.
x=3\sqrt{7} x=-3\sqrt{7}
Ecuația este rezolvată acum.