Rezolvați pentru x
x = \frac{10}{3} = 3\frac{1}{3} \approx 3,333333333
Grafic
Partajați
Copiat în clipboard
1\times 3=\frac{3}{4}x\times \frac{1\times 5+1}{5}
Variabila x nu poate fi egală cu 0, deoarece împărțirea la zero nu este definită. Înmulțiți ambele părți ale ecuației cu x.
3=\frac{3}{4}x\times \frac{1\times 5+1}{5}
Înmulțiți 1 cu 3 pentru a obține 3.
3=\frac{3}{4}x\times \frac{5+1}{5}
Înmulțiți 1 cu 5 pentru a obține 5.
3=\frac{3}{4}x\times \frac{6}{5}
Adunați 5 și 1 pentru a obține 6.
3=\frac{3\times 6}{4\times 5}x
Înmulțiți \frac{3}{4} cu \frac{6}{5} prin înmulțirea valorilor de la numărător și a valorilor de la numitor.
3=\frac{18}{20}x
Faceți înmulțiri în fracția \frac{3\times 6}{4\times 5}.
3=\frac{9}{10}x
Reduceți fracția \frac{18}{20} la cei mai mici termeni, prin extragerea și reducerea 2.
\frac{9}{10}x=3
Interschimbați părțile, astfel încât toți termenii variabili să fie pe partea stângă.
x=3\times \frac{10}{9}
Se înmulțesc ambele părți cu \frac{10}{9}, reciproca lui \frac{9}{10}.
x=\frac{3\times 10}{9}
Exprimați 3\times \frac{10}{9} ca fracție unică.
x=\frac{30}{9}
Înmulțiți 3 cu 10 pentru a obține 30.
x=\frac{10}{3}
Reduceți fracția \frac{30}{9} la cei mai mici termeni, prin extragerea și reducerea 3.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}