Direct la conținutul principal
Rezolvați pentru x
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

x^{3}+8x^{2}+21x+18=0
Interschimbați părțile, astfel încât toți termenii variabili să fie pe partea stângă.
±18,±9,±6,±3,±2,±1
Conform teoremei rădăcinii raționale, toate rădăcinile raționale ale unui polinom sunt de forma \frac{p}{q}, unde p împarte termenul constant 18 și q împarte coeficientul inițial 1. Enumerați toți candidații \frac{p}{q}.
x=-2
Găsiți o astfel de rădăcină, încercând toate valorile întregi, pornind de la cea mai mică valoare absolută. Dacă nu s-au găsit rădăcini întregi, încercați fracțiuni.
x^{2}+6x+9=0
Conform teoremei descompunerii factoriale, x-k este un factor al polinomului pentru fiecare rădăcină k. Împărțiți x^{3}+8x^{2}+21x+18 la x+2 pentru a obține x^{2}+6x+9. Rezolvați ecuația unde rezultatul este egal cu 0.
x=\frac{-6±\sqrt{6^{2}-4\times 1\times 9}}{2}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate folosind formula ecuației de gradul doi: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. În formulă, înlocuiți a cu 1, b cu 6 și c cu 9.
x=\frac{-6±0}{2}
Faceți calculele.
x=-3
Soluțiile sunt la fel.
x=-2 x=-3
Listați toate soluțiile găsite.