Rezolvați pentru x
x=-1
Grafic
Partajați
Copiat în clipboard
x^{2}+2x=-1
Interschimbați părțile, astfel încât toți termenii variabili să fie pe partea stângă.
x^{2}+2x+1=0
Adăugați 1 la ambele părți.
a+b=2 ab=1
Pentru a rezolva ecuația, factorul x^{2}+2x+1 utilizând formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Pentru a găsi a și b, configurați un sistem pentru a fi rezolvat.
a=1 b=1
Deoarece ab este pozitiv, a și b au același semn. Deoarece a+b este pozitiv, a și b sunt ambele pozitive. Singura astfel de pereche este soluția de sistem.
\left(x+1\right)\left(x+1\right)
Rescrieți expresia descompusă în factori \left(x+a\right)\left(x+b\right) utilizând valorile obținute.
\left(x+1\right)^{2}
Rescrieți ca binom pătrat.
x=-1
Pentru a găsi soluția ecuației, rezolvați x+1=0.
x^{2}+2x=-1
Interschimbați părțile, astfel încât toți termenii variabili să fie pe partea stângă.
x^{2}+2x+1=0
Adăugați 1 la ambele părți.
a+b=2 ab=1\times 1=1
Pentru a rezolva ecuația, factor mâna stângă după grupare. Mai întâi, fața la stânga trebuie să fie rescrisă ca x^{2}+ax+bx+1. Pentru a găsi a și b, configurați un sistem pentru a fi rezolvat.
a=1 b=1
Deoarece ab este pozitiv, a și b au același semn. Deoarece a+b este pozitiv, a și b sunt ambele pozitive. Singura astfel de pereche este soluția de sistem.
\left(x^{2}+x\right)+\left(x+1\right)
Rescrieți x^{2}+2x+1 ca \left(x^{2}+x\right)+\left(x+1\right).
x\left(x+1\right)+x+1
Scoateți factorul comun x din x^{2}+x.
\left(x+1\right)\left(x+1\right)
Scoateți termenul comun x+1 prin utilizarea proprietății de distributivitate.
\left(x+1\right)^{2}
Rescrieți ca binom pătrat.
x=-1
Pentru a găsi soluția ecuației, rezolvați x+1=0.
x^{2}+2x=-1
Interschimbați părțile, astfel încât toți termenii variabili să fie pe partea stângă.
x^{2}+2x+1=0
Adăugați 1 la ambele părți.
x=\frac{-2±\sqrt{2^{2}-4}}{2}
Această ecuație este în formă standard: ax^{2}+bx+c=0. Înlocuiți a cu 1, b cu 2 și c cu 1 în formula rădăcinilor ecuațiilor de gradul al doilea, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4}}{2}
Ridicați 2 la pătrat.
x=\frac{-2±\sqrt{0}}{2}
Adunați 4 cu -4.
x=-\frac{2}{2}
Aflați rădăcina pătrată pentru 0.
x=-1
Împărțiți -2 la 2.
x^{2}+2x=-1
Interschimbați părțile, astfel încât toți termenii variabili să fie pe partea stângă.
x^{2}+2x+1^{2}=-1+1^{2}
Împărțiți 2, coeficientul termenului x, la 2 pentru a obține 1. Apoi, adunați pătratul lui 1 la ambele părți ale ecuației. Acest pas face din partea stângă a ecuației un pătrat perfect.
x^{2}+2x+1=-1+1
Ridicați 1 la pătrat.
x^{2}+2x+1=0
Adunați -1 cu 1.
\left(x+1\right)^{2}=0
Factor x^{2}+2x+1. În general, atunci când x^{2}+bx+c este un pătrat perfect, el poate fi descompus în factori oricând ca \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{0}
Aflați rădăcina pătrată pentru ambele părți ale ecuației.
x+1=0 x+1=0
Simplificați.
x=-1 x=-1
Scădeți 1 din ambele părți ale ecuației.
x=-1
Ecuația este rezolvată acum. Soluțiile sunt la fel.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}