Rezolvați pentru x
x\geq 2
Grafic
Partajați
Copiat în clipboard
-1-\left(-2x\right)-5x\leq -\left(1+x\right)-4
Pentru a găsi opusul lui 1-2x, găsiți opusul fiecărui termen.
-1+2x-5x\leq -\left(1+x\right)-4
Opusul lui -2x este 2x.
-1-3x\leq -\left(1+x\right)-4
Combinați 2x cu -5x pentru a obține -3x.
-1-3x\leq -1-x-4
Pentru a găsi opusul lui 1+x, găsiți opusul fiecărui termen.
-1-3x\leq -5-x
Scădeți 4 din -1 pentru a obține -5.
-1-3x+x\leq -5
Adăugați x la ambele părți.
-1-2x\leq -5
Combinați -3x cu x pentru a obține -2x.
-2x\leq -5+1
Adăugați 1 la ambele părți.
-2x\leq -4
Adunați -5 și 1 pentru a obține -4.
x\geq \frac{-4}{-2}
Se împart ambele părți la -2. Deoarece -2 este negativ, direcția inegalitatea este modificată.
x\geq 2
Împărțiți -4 la -2 pentru a obține 2.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}