Rezolvați pentru x
x=\frac{\left(y-3\right)^{2}+40}{10}
Rezolvați pentru y (complex solution)
y=-\sqrt{10\left(x-4\right)}+3
y=\sqrt{10\left(x-4\right)}+3
Rezolvați pentru y
y=-\sqrt{10\left(x-4\right)}+3
y=\sqrt{10\left(x-4\right)}+3\text{, }x\geq 4
Grafic
Partajați
Copiat în clipboard
y^{2}-6y+9=10\left(x-4\right)
Utilizați binomul lui Newton \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pentru a extinde \left(y-3\right)^{2}.
y^{2}-6y+9=10x-40
Utilizați proprietatea de distributivitate pentru a înmulți 10 cu x-4.
10x-40=y^{2}-6y+9
Interschimbați părțile, astfel încât toți termenii variabili să fie pe partea stângă.
10x=y^{2}-6y+9+40
Adăugați 40 la ambele părți.
10x=y^{2}-6y+49
Adunați 9 și 40 pentru a obține 49.
\frac{10x}{10}=\frac{y^{2}-6y+49}{10}
Se împart ambele părți la 10.
x=\frac{y^{2}-6y+49}{10}
Împărțirea la 10 anulează înmulțirea cu 10.
x=\frac{y^{2}}{10}-\frac{3y}{5}+\frac{49}{10}
Împărțiți y^{2}-6y+49 la 10.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}