Direct la conținutul principal
Rezolvați pentru x
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

x^{3}-6x^{2}+12x-8=0\times 125
Utilizați binomul lui Newton \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} pentru a extinde \left(x-2\right)^{3}.
x^{3}-6x^{2}+12x-8=0
Înmulțiți 0 cu 125 pentru a obține 0.
±8,±4,±2,±1
Conform teoremei rădăcinii raționale, toate rădăcinile raționale ale unui polinom sunt de forma \frac{p}{q}, unde p împarte termenul constant -8 și q împarte coeficientul inițial 1. Enumerați toți candidații \frac{p}{q}.
x=2
Găsiți o astfel de rădăcină, încercând toate valorile întregi, pornind de la cea mai mică valoare absolută. Dacă nu s-au găsit rădăcini întregi, încercați fracțiuni.
x^{2}-4x+4=0
Conform teoremei descompunerii factoriale, x-k este un factor al polinomului pentru fiecare rădăcină k. Împărțiți x^{3}-6x^{2}+12x-8 la x-2 pentru a obține x^{2}-4x+4. Rezolvați ecuația unde rezultatul este egal cu 0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\times 4}}{2}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate folosind formula ecuației de gradul doi: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. În formulă, înlocuiți a cu 1, b cu -4 și c cu 4.
x=\frac{4±0}{2}
Faceți calculele.
x=2
Soluțiile sunt la fel.