Rezolvați pentru x
x=5
x=-1
Grafic
Partajați
Copiat în clipboard
x^{2}-4x+4=9
Utilizați binomul lui Newton \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pentru a extinde \left(x-2\right)^{2}.
x^{2}-4x+4-9=0
Scădeți 9 din ambele părți.
x^{2}-4x-5=0
Scădeți 9 din 4 pentru a obține -5.
a+b=-4 ab=-5
Pentru a rezolva ecuația, factorul x^{2}-4x-5 utilizând formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Pentru a găsi a și b, configurați un sistem pentru a fi rezolvat.
a=-5 b=1
Deoarece ab este negativ, a și b au semne opuse. Deoarece a+b este negativ, numărul negativ are o valoare absolută mai mare decât valoarea pozitivă. Singura astfel de pereche este soluția de sistem.
\left(x-5\right)\left(x+1\right)
Rescrieți expresia descompusă în factori \left(x+a\right)\left(x+b\right) utilizând valorile obținute.
x=5 x=-1
Pentru a găsi soluții de ecuații, rezolvați x-5=0 și x+1=0.
x^{2}-4x+4=9
Utilizați binomul lui Newton \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pentru a extinde \left(x-2\right)^{2}.
x^{2}-4x+4-9=0
Scădeți 9 din ambele părți.
x^{2}-4x-5=0
Scădeți 9 din 4 pentru a obține -5.
a+b=-4 ab=1\left(-5\right)=-5
Pentru a rezolva ecuația, factor mâna stângă după grupare. Mai întâi, fața la stânga trebuie să fie rescrisă ca x^{2}+ax+bx-5. Pentru a găsi a și b, configurați un sistem pentru a fi rezolvat.
a=-5 b=1
Deoarece ab este negativ, a și b au semne opuse. Deoarece a+b este negativ, numărul negativ are o valoare absolută mai mare decât valoarea pozitivă. Singura astfel de pereche este soluția de sistem.
\left(x^{2}-5x\right)+\left(x-5\right)
Rescrieți x^{2}-4x-5 ca \left(x^{2}-5x\right)+\left(x-5\right).
x\left(x-5\right)+x-5
Scoateți factorul comun x din x^{2}-5x.
\left(x-5\right)\left(x+1\right)
Scoateți termenul comun x-5 prin utilizarea proprietății de distributivitate.
x=5 x=-1
Pentru a găsi soluții de ecuații, rezolvați x-5=0 și x+1=0.
x^{2}-4x+4=9
Utilizați binomul lui Newton \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pentru a extinde \left(x-2\right)^{2}.
x^{2}-4x+4-9=0
Scădeți 9 din ambele părți.
x^{2}-4x-5=0
Scădeți 9 din 4 pentru a obține -5.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)}}{2}
Această ecuație este în formă standard: ax^{2}+bx+c=0. Înlocuiți a cu 1, b cu -4 și c cu -5 în formula rădăcinilor ecuațiilor de gradul al doilea, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)}}{2}
Ridicați -4 la pătrat.
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2}
Înmulțiți -4 cu -5.
x=\frac{-\left(-4\right)±\sqrt{36}}{2}
Adunați 16 cu 20.
x=\frac{-\left(-4\right)±6}{2}
Aflați rădăcina pătrată pentru 36.
x=\frac{4±6}{2}
Opusul lui -4 este 4.
x=\frac{10}{2}
Acum rezolvați ecuația x=\frac{4±6}{2} atunci când ± este plus. Adunați 4 cu 6.
x=5
Împărțiți 10 la 2.
x=-\frac{2}{2}
Acum rezolvați ecuația x=\frac{4±6}{2} atunci când ± este minus. Scădeți 6 din 4.
x=-1
Împărțiți -2 la 2.
x=5 x=-1
Ecuația este rezolvată acum.
\sqrt{\left(x-2\right)^{2}}=\sqrt{9}
Aflați rădăcina pătrată pentru ambele părți ale ecuației.
x-2=3 x-2=-3
Simplificați.
x=5 x=-1
Adunați 2 la ambele părți ale ecuației.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}