Evaluați
x^{6}+1
Calculați derivata în funcție de x
6x^{5}
Grafic
Partajați
Copiat în clipboard
\left(x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1\right)\left(x^{2}+\sqrt{3}x+1\right)
Utilizați proprietatea de distributivitate pentru a înmulți x^{2}+1 cu x^{2}-\sqrt{3}x+1.
\left(x^{2}-\sqrt{3}x\right)x^{4}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Utilizați proprietatea de distributivitate pentru a înmulți x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1 cu x^{2}+\sqrt{3}x+1 și a combina termenii similari.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Utilizați proprietatea de distributivitate pentru a înmulți x^{2}-\sqrt{3}x cu x^{4}.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Utilizați proprietatea de distributivitate pentru a înmulți x^{2}-\sqrt{3}x cu \sqrt{3}.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\times 3\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Pătratul lui \sqrt{3} este 3.
x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-3x\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Înmulțiți -1 cu 3 pentru a obține -3.
x^{6}-\sqrt{3}x^{5}+\sqrt{3}x^{5}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Utilizați proprietatea de distributivitate pentru a înmulți x^{2}\sqrt{3}-3x cu x^{3}.
x^{6}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Combinați -\sqrt{3}x^{5} cu \sqrt{3}x^{5} pentru a obține 0.
x^{6}-3x^{4}+2x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Utilizați proprietatea de distributivitate pentru a înmulți 2x^{2} cu x^{2}-\sqrt{3}x.
x^{6}-x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Combinați -3x^{4} cu 2x^{4} pentru a obține -x^{4}.
x^{6}-2\sqrt{3}x^{3}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Combinați -x^{4} cu x^{4} pentru a obține 0.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Combinați -2\sqrt{3}x^{3} cu \sqrt{3}x^{3} pentru a obține -\sqrt{3}x^{3}.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Utilizați proprietatea de distributivitate pentru a înmulți x^{2}-\sqrt{3}x cu \sqrt{3}.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\times 3\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Pătratul lui \sqrt{3} este 3.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-3x\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Înmulțiți -1 cu 3 pentru a obține -3.
x^{6}-\sqrt{3}x^{3}+2x^{2}+\sqrt{3}x^{3}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Utilizați proprietatea de distributivitate pentru a înmulți x^{2}\sqrt{3}-3x cu x.
x^{6}+2x^{2}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Combinați -\sqrt{3}x^{3} cu \sqrt{3}x^{3} pentru a obține 0.
x^{6}-x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1
Combinați 2x^{2} cu -3x^{2} pentru a obține -x^{2}.
x^{6}-\sqrt{3}x+\sqrt{3}x+1
Combinați -x^{2} cu x^{2} pentru a obține 0.
x^{6}+1
Combinați -\sqrt{3}x cu \sqrt{3}x pentru a obține 0.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1\right)\left(x^{2}+\sqrt{3}x+1\right))
Utilizați proprietatea de distributivitate pentru a înmulți x^{2}+1 cu x^{2}-\sqrt{3}x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(x^{2}-\sqrt{3}x\right)x^{4}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Utilizați proprietatea de distributivitate pentru a înmulți x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{2}+x^{2}-\sqrt{3}x+1 cu x^{2}+\sqrt{3}x+1 și a combina termenii similari.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Utilizați proprietatea de distributivitate pentru a înmulți x^{2}-\sqrt{3}x cu x^{4}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Utilizați proprietatea de distributivitate pentru a înmulți x^{2}-\sqrt{3}x cu \sqrt{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-x\times 3\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Pătratul lui \sqrt{3} este 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\left(x^{2}\sqrt{3}-3x\right)x^{3}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Înmulțiți -1 cu 3 pentru a obține -3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{5}+\sqrt{3}x^{5}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Utilizați proprietatea de distributivitate pentru a înmulți x^{2}\sqrt{3}-3x cu x^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-3x^{4}+2x^{2}\left(x^{2}-\sqrt{3}x\right)+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Combinați -\sqrt{3}x^{5} cu \sqrt{3}x^{5} pentru a obține 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-3x^{4}+2x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Utilizați proprietatea de distributivitate pentru a înmulți 2x^{2} cu x^{2}-\sqrt{3}x.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-x^{4}-2\sqrt{3}x^{3}+x^{4}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Combinați -3x^{4} cu 2x^{4} pentru a obține -x^{4}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-2\sqrt{3}x^{3}+\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Combinați -x^{4} cu x^{4} pentru a obține 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}-\sqrt{3}x\right)\sqrt{3}x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Combinați -2\sqrt{3}x^{3} cu \sqrt{3}x^{3} pentru a obține -\sqrt{3}x^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\left(\sqrt{3}\right)^{2}\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Utilizați proprietatea de distributivitate pentru a înmulți x^{2}-\sqrt{3}x cu \sqrt{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-x\times 3\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Pătratul lui \sqrt{3} este 3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\left(x^{2}\sqrt{3}-3x\right)x+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Înmulțiți -1 cu 3 pentru a obține -3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x^{3}+2x^{2}+\sqrt{3}x^{3}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Utilizați proprietatea de distributivitate pentru a înmulți x^{2}\sqrt{3}-3x cu x.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}+2x^{2}-3x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Combinați -\sqrt{3}x^{3} cu \sqrt{3}x^{3} pentru a obține 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-x^{2}+x^{2}-\sqrt{3}x+\sqrt{3}x+1)
Combinați 2x^{2} cu -3x^{2} pentru a obține -x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}-\sqrt{3}x+\sqrt{3}x+1)
Combinați -x^{2} cu x^{2} pentru a obține 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{6}+1)
Combinați -\sqrt{3}x cu \sqrt{3}x pentru a obține 0.
6x^{6-1}
Derivata unui polinom este suma derivatelor termenilor săi. Derivata unui termen constant este 0. Derivata lui ax^{n} este nax^{n-1}.
6x^{5}
Scădeți 1 din 6.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}