Evaluați
\frac{\left(4m^{2}-1\right)^{2}}{16}
Extindere
m^{4}-\frac{m^{2}}{2}+\frac{1}{16}
Partajați
Copiat în clipboard
\left(m^{2}-\left(\frac{1}{2}\right)^{2}\right)^{2}
Înmulțiți m cu m pentru a obține m^{2}.
\left(m^{2}-\frac{1}{4}\right)^{2}
Calculați \frac{1}{2} la puterea 2 și obțineți \frac{1}{4}.
\left(m^{2}\right)^{2}-\frac{1}{2}m^{2}+\frac{1}{16}
Utilizați binomul lui Newton \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pentru a extinde \left(m^{2}-\frac{1}{4}\right)^{2}.
m^{4}-\frac{1}{2}m^{2}+\frac{1}{16}
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 2 cu 2 pentru a obține 4.
\left(m^{2}-\left(\frac{1}{2}\right)^{2}\right)^{2}
Înmulțiți m cu m pentru a obține m^{2}.
\left(m^{2}-\frac{1}{4}\right)^{2}
Calculați \frac{1}{2} la puterea 2 și obțineți \frac{1}{4}.
\left(m^{2}\right)^{2}-\frac{1}{2}m^{2}+\frac{1}{16}
Utilizați binomul lui Newton \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pentru a extinde \left(m^{2}-\frac{1}{4}\right)^{2}.
m^{4}-\frac{1}{2}m^{2}+\frac{1}{16}
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 2 cu 2 pentru a obține 4.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}