Rezolvați pentru x (complex solution)
x=\frac{4+\sqrt{14}i}{15}\approx 0,266666667+0,249443826i
x=\frac{-\sqrt{14}i+4}{15}\approx 0,266666667-0,249443826i
Grafic
Partajați
Copiat în clipboard
16x^{2}-8x+1=\left(x-1\right)\left(x+1\right)
Utilizați binomul lui Newton \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pentru a extinde \left(4x-1\right)^{2}.
16x^{2}-8x+1=x^{2}-1
Să luăm \left(x-1\right)\left(x+1\right). Înmulțirea poate fi transformată în diferența pătratelor, folosind regula: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Ridicați 1 la pătrat.
16x^{2}-8x+1-x^{2}=-1
Scădeți x^{2} din ambele părți.
15x^{2}-8x+1=-1
Combinați 16x^{2} cu -x^{2} pentru a obține 15x^{2}.
15x^{2}-8x+1+1=0
Adăugați 1 la ambele părți.
15x^{2}-8x+2=0
Adunați 1 și 1 pentru a obține 2.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15\times 2}}{2\times 15}
Această ecuație este în formă standard: ax^{2}+bx+c=0. Înlocuiți a cu 15, b cu -8 și c cu 2 în formula rădăcinilor ecuațiilor de gradul al doilea, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 15\times 2}}{2\times 15}
Ridicați -8 la pătrat.
x=\frac{-\left(-8\right)±\sqrt{64-60\times 2}}{2\times 15}
Înmulțiți -4 cu 15.
x=\frac{-\left(-8\right)±\sqrt{64-120}}{2\times 15}
Înmulțiți -60 cu 2.
x=\frac{-\left(-8\right)±\sqrt{-56}}{2\times 15}
Adunați 64 cu -120.
x=\frac{-\left(-8\right)±2\sqrt{14}i}{2\times 15}
Aflați rădăcina pătrată pentru -56.
x=\frac{8±2\sqrt{14}i}{2\times 15}
Opusul lui -8 este 8.
x=\frac{8±2\sqrt{14}i}{30}
Înmulțiți 2 cu 15.
x=\frac{8+2\sqrt{14}i}{30}
Acum rezolvați ecuația x=\frac{8±2\sqrt{14}i}{30} atunci când ± este plus. Adunați 8 cu 2i\sqrt{14}.
x=\frac{4+\sqrt{14}i}{15}
Împărțiți 8+2i\sqrt{14} la 30.
x=\frac{-2\sqrt{14}i+8}{30}
Acum rezolvați ecuația x=\frac{8±2\sqrt{14}i}{30} atunci când ± este minus. Scădeți 2i\sqrt{14} din 8.
x=\frac{-\sqrt{14}i+4}{15}
Împărțiți 8-2i\sqrt{14} la 30.
x=\frac{4+\sqrt{14}i}{15} x=\frac{-\sqrt{14}i+4}{15}
Ecuația este rezolvată acum.
16x^{2}-8x+1=\left(x-1\right)\left(x+1\right)
Utilizați binomul lui Newton \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pentru a extinde \left(4x-1\right)^{2}.
16x^{2}-8x+1=x^{2}-1
Să luăm \left(x-1\right)\left(x+1\right). Înmulțirea poate fi transformată în diferența pătratelor, folosind regula: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Ridicați 1 la pătrat.
16x^{2}-8x+1-x^{2}=-1
Scădeți x^{2} din ambele părți.
15x^{2}-8x+1=-1
Combinați 16x^{2} cu -x^{2} pentru a obține 15x^{2}.
15x^{2}-8x=-1-1
Scădeți 1 din ambele părți.
15x^{2}-8x=-2
Scădeți 1 din -1 pentru a obține -2.
\frac{15x^{2}-8x}{15}=-\frac{2}{15}
Se împart ambele părți la 15.
x^{2}-\frac{8}{15}x=-\frac{2}{15}
Împărțirea la 15 anulează înmulțirea cu 15.
x^{2}-\frac{8}{15}x+\left(-\frac{4}{15}\right)^{2}=-\frac{2}{15}+\left(-\frac{4}{15}\right)^{2}
Împărțiți -\frac{8}{15}, coeficientul termenului x, la 2 pentru a obține -\frac{4}{15}. Apoi, adunați pătratul lui -\frac{4}{15} la ambele părți ale ecuației. Acest pas face din partea stângă a ecuației un pătrat perfect.
x^{2}-\frac{8}{15}x+\frac{16}{225}=-\frac{2}{15}+\frac{16}{225}
Ridicați -\frac{4}{15} la pătrat, calculând pătratul pentru numărătorul și numitorul fracției.
x^{2}-\frac{8}{15}x+\frac{16}{225}=-\frac{14}{225}
Adunați -\frac{2}{15} cu \frac{16}{225} găsind un numitor comun și adunând numărătorii. Apoi simplificați fracția până devine ireductibilă, dacă este posibil.
\left(x-\frac{4}{15}\right)^{2}=-\frac{14}{225}
Factor x^{2}-\frac{8}{15}x+\frac{16}{225}. În general, atunci când x^{2}+bx+c este un pătrat perfect, el poate fi descompus în factori oricând ca \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{15}\right)^{2}}=\sqrt{-\frac{14}{225}}
Aflați rădăcina pătrată pentru ambele părți ale ecuației.
x-\frac{4}{15}=\frac{\sqrt{14}i}{15} x-\frac{4}{15}=-\frac{\sqrt{14}i}{15}
Simplificați.
x=\frac{4+\sqrt{14}i}{15} x=\frac{-\sqrt{14}i+4}{15}
Adunați \frac{4}{15} la ambele părți ale ecuației.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}