Direct la conținutul principal
Evaluați
Tick mark Image
Calculați derivata în funcție de x
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

3x-3+\frac{1}{x+3}+1-\frac{3}{2x+1}
Combinați 2x cu x pentru a obține 3x.
3x-2+\frac{1}{x+3}-\frac{3}{2x+1}
Adunați -3 și 1 pentru a obține -2.
\frac{\left(3x-2\right)\left(x+3\right)}{x+3}+\frac{1}{x+3}-\frac{3}{2x+1}
Pentru a adăuga sau a scădea expresii, extindeți-le pentru a face identici numitorii lor. Înmulțiți 3x-2 cu \frac{x+3}{x+3}.
\frac{\left(3x-2\right)\left(x+3\right)+1}{x+3}-\frac{3}{2x+1}
Deoarece \frac{\left(3x-2\right)\left(x+3\right)}{x+3} și \frac{1}{x+3} au același numitor comun, adunați-le adunând numărătorii lor.
\frac{3x^{2}+9x-2x-6+1}{x+3}-\frac{3}{2x+1}
Faceți înmulțiri în \left(3x-2\right)\left(x+3\right)+1.
\frac{3x^{2}+7x-5}{x+3}-\frac{3}{2x+1}
Combinați termeni similari în 3x^{2}+9x-2x-6+1.
\frac{\left(3x^{2}+7x-5\right)\left(2x+1\right)}{\left(x+3\right)\left(2x+1\right)}-\frac{3\left(x+3\right)}{\left(x+3\right)\left(2x+1\right)}
Pentru a adăuga sau a scădea expresii, extindeți-le pentru a face identici numitorii lor. Cel mai mic multiplu comun al lui x+3 și 2x+1 este \left(x+3\right)\left(2x+1\right). Înmulțiți \frac{3x^{2}+7x-5}{x+3} cu \frac{2x+1}{2x+1}. Înmulțiți \frac{3}{2x+1} cu \frac{x+3}{x+3}.
\frac{\left(3x^{2}+7x-5\right)\left(2x+1\right)-3\left(x+3\right)}{\left(x+3\right)\left(2x+1\right)}
Deoarece \frac{\left(3x^{2}+7x-5\right)\left(2x+1\right)}{\left(x+3\right)\left(2x+1\right)} și \frac{3\left(x+3\right)}{\left(x+3\right)\left(2x+1\right)} au același numitor comun, scădeți-le scăzând numărătorii lor.
\frac{6x^{3}+3x^{2}+14x^{2}+7x-10x-5-3x-9}{\left(x+3\right)\left(2x+1\right)}
Faceți înmulțiri în \left(3x^{2}+7x-5\right)\left(2x+1\right)-3\left(x+3\right).
\frac{6x^{3}+17x^{2}-6x-14}{\left(x+3\right)\left(2x+1\right)}
Combinați termeni similari în 6x^{3}+3x^{2}+14x^{2}+7x-10x-5-3x-9.
\frac{6x^{3}+17x^{2}-6x-14}{2x^{2}+7x+3}
Extindeți \left(x+3\right)\left(2x+1\right).