Direct la conținutul principal
Evaluați
Tick mark Image
Extindere
Tick mark Image

Probleme similare din căutarea web

Partajați

4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Utilizați binomul lui Newton \left(p+q\right)^{2}=p^{2}+2pq+q^{2} pentru a extinde \left(2a^{2}+b\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 2 cu 2 pentru a obține 4.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Extindeți \left(-2a^{2}\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 2 cu 2 pentru a obține 4.
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Calculați -2 la puterea 2 și obțineți 4.
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Înmulțiți 2 cu 4 pentru a obține 8.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Combinați 4a^{4} cu -8a^{4} pentru a obține -4a^{4}.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
Extindeți \left(\frac{1}{2}b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
Calculați \frac{1}{2} la puterea 2 și obțineți \frac{1}{4}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
Pentru a înmulți puterile cu aceeași baze, adunați exponenții lor. Adunați 1 și 2 pentru a obține 3.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
Utilizați binomul lui Newton \left(p-q\right)^{2}=p^{2}-2pq+q^{2} pentru a extinde \left(2a^{2}-b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 2 cu 2 pentru a obține 4.
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
Înmulțiți -1 cu \frac{1}{4} pentru a obține -\frac{1}{4}.
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
Combinați -4a^{4} cu 4a^{4} pentru a obține 0.
b^{2}-\frac{1}{4}b^{3}+b^{2}
Combinați 4a^{2}b cu -4a^{2}b pentru a obține 0.
2b^{2}-\frac{1}{4}b^{3}
Combinați b^{2} cu b^{2} pentru a obține 2b^{2}.
4\left(a^{2}\right)^{2}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Utilizați binomul lui Newton \left(p+q\right)^{2}=p^{2}+2pq+q^{2} pentru a extinde \left(2a^{2}+b\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 2 cu 2 pentru a obține 4.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}\left(a^{2}\right)^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Extindeți \left(-2a^{2}\right)^{2}.
4a^{4}+4a^{2}b+b^{2}-2\left(-2\right)^{2}a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 2 cu 2 pentru a obține 4.
4a^{4}+4a^{2}b+b^{2}-2\times 4a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Calculați -2 la puterea 2 și obțineți 4.
4a^{4}+4a^{2}b+b^{2}-8a^{4}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Înmulțiți 2 cu 4 pentru a obține 8.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}b\right)^{2}+\left(2a^{2}-b\right)^{2}
Combinați 4a^{4} cu -8a^{4} pentru a obține -4a^{4}.
-4a^{4}+4a^{2}b+b^{2}-b\times \left(\frac{1}{2}\right)^{2}b^{2}+\left(2a^{2}-b\right)^{2}
Extindeți \left(\frac{1}{2}b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b\times \frac{1}{4}b^{2}+\left(2a^{2}-b\right)^{2}
Calculați \frac{1}{2} la puterea 2 și obțineți \frac{1}{4}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+\left(2a^{2}-b\right)^{2}
Pentru a înmulți puterile cu aceeași baze, adunați exponenții lor. Adunați 1 și 2 pentru a obține 3.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4\left(a^{2}\right)^{2}-4a^{2}b+b^{2}
Utilizați binomul lui Newton \left(p-q\right)^{2}=p^{2}-2pq+q^{2} pentru a extinde \left(2a^{2}-b\right)^{2}.
-4a^{4}+4a^{2}b+b^{2}-b^{3}\times \frac{1}{4}+4a^{4}-4a^{2}b+b^{2}
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 2 cu 2 pentru a obține 4.
-4a^{4}+4a^{2}b+b^{2}-\frac{1}{4}b^{3}+4a^{4}-4a^{2}b+b^{2}
Înmulțiți -1 cu \frac{1}{4} pentru a obține -\frac{1}{4}.
4a^{2}b+b^{2}-\frac{1}{4}b^{3}-4a^{2}b+b^{2}
Combinați -4a^{4} cu 4a^{4} pentru a obține 0.
b^{2}-\frac{1}{4}b^{3}+b^{2}
Combinați 4a^{2}b cu -4a^{2}b pentru a obține 0.
2b^{2}-\frac{1}{4}b^{3}
Combinați b^{2} cu b^{2} pentru a obține 2b^{2}.