Rezolvați pentru Y
Y=\frac{1}{3\alpha }
\alpha \neq 0
Rezolvați pentru α
\alpha =\frac{1}{3Y}
Y\neq 0
Partajați
Copiat în clipboard
6\alpha Y=2
Înmulțiți 2 cu 3 pentru a obține 6.
\frac{6\alpha Y}{6\alpha }=\frac{2}{6\alpha }
Se împart ambele părți la 6\alpha .
Y=\frac{2}{6\alpha }
Împărțirea la 6\alpha anulează înmulțirea cu 6\alpha .
Y=\frac{1}{3\alpha }
Împărțiți 2 la 6\alpha .
6\alpha Y=2
Înmulțiți 2 cu 3 pentru a obține 6.
6Y\alpha =2
Ecuația este în forma standard.
\frac{6Y\alpha }{6Y}=\frac{2}{6Y}
Se împart ambele părți la 6Y.
\alpha =\frac{2}{6Y}
Împărțirea la 6Y anulează înmulțirea cu 6Y.
\alpha =\frac{1}{3Y}
Împărțiți 2 la 6Y.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}