Direct la conținutul principal
Rezolvați pentru r
Tick mark Image

Probleme similare din căutarea web

Partajați

\frac{1}{2}\times 4r^{2}=675
Reduceți prin eliminare \pi pe ambele părți.
2r^{2}=675
Înmulțiți \frac{1}{2} cu 4 pentru a obține 2.
r^{2}=\frac{675}{2}
Se împart ambele părți la 2.
r=\frac{15\sqrt{6}}{2} r=-\frac{15\sqrt{6}}{2}
Aflați rădăcina pătrată pentru ambele părți ale ecuației.
\frac{1}{2}\times 4r^{2}=675
Reduceți prin eliminare \pi pe ambele părți.
2r^{2}=675
Înmulțiți \frac{1}{2} cu 4 pentru a obține 2.
2r^{2}-675=0
Scădeți 675 din ambele părți.
r=\frac{0±\sqrt{0^{2}-4\times 2\left(-675\right)}}{2\times 2}
Această ecuație este în formă standard: ax^{2}+bx+c=0. Înlocuiți a cu 2, b cu 0 și c cu -675 în formula rădăcinilor ecuațiilor de gradul al doilea, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\times 2\left(-675\right)}}{2\times 2}
Ridicați 0 la pătrat.
r=\frac{0±\sqrt{-8\left(-675\right)}}{2\times 2}
Înmulțiți -4 cu 2.
r=\frac{0±\sqrt{5400}}{2\times 2}
Înmulțiți -8 cu -675.
r=\frac{0±30\sqrt{6}}{2\times 2}
Aflați rădăcina pătrată pentru 5400.
r=\frac{0±30\sqrt{6}}{4}
Înmulțiți 2 cu 2.
r=\frac{15\sqrt{6}}{2}
Acum rezolvați ecuația r=\frac{0±30\sqrt{6}}{4} atunci când ± este plus.
r=-\frac{15\sqrt{6}}{2}
Acum rezolvați ecuația r=\frac{0±30\sqrt{6}}{4} atunci când ± este minus.
r=\frac{15\sqrt{6}}{2} r=-\frac{15\sqrt{6}}{2}
Ecuația este rezolvată acum.