Evaluați
\frac{x}{45}
Calculați derivata în funcție de x
\frac{1}{45} = 0,022222222222222223
Grafic
Partajați
Copiat în clipboard
\frac{2x}{2\times 5}\times \frac{7}{63}
Exprimați \frac{\frac{2x}{2}}{5} ca fracție unică.
\frac{x}{5}\times \frac{7}{63}
Reduceți prin eliminare 2 atât în numărător, cât și în numitor.
\frac{x}{5}\times \frac{1}{9}
Reduceți fracția \frac{7}{63} la cei mai mici termeni, prin extragerea și reducerea 7.
\frac{x}{5\times 9}
Înmulțiți \frac{x}{5} cu \frac{1}{9} prin înmulțirea valorilor de la numărător și a valorilor de la numitor.
\frac{x}{45}
Înmulțiți 5 cu 9 pentru a obține 45.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{2\times 5}\times \frac{7}{63})
Exprimați \frac{\frac{2x}{2}}{5} ca fracție unică.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{5}\times \frac{7}{63})
Reduceți prin eliminare 2 atât în numărător, cât și în numitor.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{5}\times \frac{1}{9})
Reduceți fracția \frac{7}{63} la cei mai mici termeni, prin extragerea și reducerea 7.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{5\times 9})
Înmulțiți \frac{x}{5} cu \frac{1}{9} prin înmulțirea valorilor de la numărător și a valorilor de la numitor.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{45})
Înmulțiți 5 cu 9 pentru a obține 45.
\frac{1}{45}x^{1-1}
Derivata ax^{n} este nax^{n-1}.
\frac{1}{45}x^{0}
Scădeți 1 din 1.
\frac{1}{45}\times 1
Pentru orice termen t cu excepția lui 0, t^{0}=1.
\frac{1}{45}
Pentru orice termen t, t\times 1=t și 1t=t.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}