Rezolvați pentru x (complex solution)
x=-3\sqrt{3}i-3\approx -3-5,196152423i
x=6
x=-3+3\sqrt{3}i\approx -3+5,196152423i
Rezolvați pentru x
x=6
Grafic
Partajați
Copiat în clipboard
x^{3}-216=0
Scădeți 216 din ambele părți.
±216,±108,±72,±54,±36,±27,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
Conform teoremei rădăcinii raționale, toate rădăcinile raționale ale unui polinom sunt de forma \frac{p}{q}, unde p împarte termenul constant -216 și q împarte coeficientul inițial 1. Enumerați toți candidații \frac{p}{q}.
x=6
Găsiți o astfel de rădăcină, încercând toate valorile întregi, pornind de la cea mai mică valoare absolută. Dacă nu s-au găsit rădăcini întregi, încercați fracțiuni.
x^{2}+6x+36=0
Conform teoremei descompunerii factoriale, x-k este un factor al polinomului pentru fiecare rădăcină k. Împărțiți x^{3}-216 la x-6 pentru a obține x^{2}+6x+36. Rezolvați ecuația unde rezultatul este egal cu 0.
x=\frac{-6±\sqrt{6^{2}-4\times 1\times 36}}{2}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate folosind formula ecuației de gradul doi: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. În formulă, înlocuiți a cu 1, b cu 6 și c cu 36.
x=\frac{-6±\sqrt{-108}}{2}
Faceți calculele.
x=-3i\sqrt{3}-3 x=-3+3i\sqrt{3}
Rezolvați ecuația x^{2}+6x+36=0 când ± este plus și când ± este minus.
x=6 x=-3i\sqrt{3}-3 x=-3+3i\sqrt{3}
Listați toate soluțiile găsite.
x^{3}-216=0
Scădeți 216 din ambele părți.
±216,±108,±72,±54,±36,±27,±24,±18,±12,±9,±8,±6,±4,±3,±2,±1
Conform teoremei rădăcinii raționale, toate rădăcinile raționale ale unui polinom sunt de forma \frac{p}{q}, unde p împarte termenul constant -216 și q împarte coeficientul inițial 1. Enumerați toți candidații \frac{p}{q}.
x=6
Găsiți o astfel de rădăcină, încercând toate valorile întregi, pornind de la cea mai mică valoare absolută. Dacă nu s-au găsit rădăcini întregi, încercați fracțiuni.
x^{2}+6x+36=0
Conform teoremei descompunerii factoriale, x-k este un factor al polinomului pentru fiecare rădăcină k. Împărțiți x^{3}-216 la x-6 pentru a obține x^{2}+6x+36. Rezolvați ecuația unde rezultatul este egal cu 0.
x=\frac{-6±\sqrt{6^{2}-4\times 1\times 36}}{2}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate folosind formula ecuației de gradul doi: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. În formulă, înlocuiți a cu 1, b cu 6 și c cu 36.
x=\frac{-6±\sqrt{-108}}{2}
Faceți calculele.
x\in \emptyset
Pentru că rădăcina pătrată a unui număr negativ nu este definită în câmpul real, nu există soluții.
x=6
Listați toate soluțiile găsite.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}