Direct la conținutul principal
Descompunere în factori
Tick mark Image
Evaluați
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

a+b=-2 ab=1\left(-3\right)=-3
Descompuneți expresia în factori prin grupare. Mai întâi, expresia trebuie să fie rescrisă ca x^{2}+ax+bx-3. Pentru a găsi a și b, configurați un sistem care să fie rezolvat.
a=-3 b=1
Deoarece ab este negativ, a și b au semne opuse. Deoarece a+b este negativ, numărul negativ are o valoare absolută mai mare decât pozitivul. Singura astfel de pereche este soluția de sistem.
\left(x^{2}-3x\right)+\left(x-3\right)
Rescrieți x^{2}-2x-3 ca \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
Scoateți factorul comun x din x^{2}-3x.
\left(x-3\right)\left(x+1\right)
Scoateți termenul comun x-3 prin utilizarea proprietății de distributivitate.
x^{2}-2x-3=0
Polinomul de gradul doi se poate descompune în factori folosind transformarea ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), unde x_{1} și x_{2} sunt soluțiile ecuației de gradul doi ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate utilizând formula rădăcinilor ecuației de gradul al doilea: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula rădăcinilor ecuației de gradul al doilea oferă două soluții, una atunci când operația ± este de adunare și una atunci când este de scădere.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
Ridicați -2 la pătrat.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
Înmulțiți -4 cu -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
Adunați 4 cu 12.
x=\frac{-\left(-2\right)±4}{2}
Aflați rădăcina pătrată pentru 16.
x=\frac{2±4}{2}
Opusul lui -2 este 2.
x=\frac{6}{2}
Acum rezolvați ecuația x=\frac{2±4}{2} atunci când ± este plus. Adunați 2 cu 4.
x=3
Împărțiți 6 la 2.
x=-\frac{2}{2}
Acum rezolvați ecuația x=\frac{2±4}{2} atunci când ± este minus. Scădeți 4 din 2.
x=-1
Împărțiți -2 la 2.
x^{2}-2x-3=\left(x-3\right)\left(x-\left(-1\right)\right)
Descompuneți în factori expresia inițială utilizând ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Înlocuiți x_{1} cu 3 și x_{2} cu -1.
x^{2}-2x-3=\left(x-3\right)\left(x+1\right)
Simplificați toate expresiile formei p-\left(-q\right) la p+q.