Evaluați
x\left(x+1\right)
Descompunere în factori
x\left(x+1\right)
Grafic
Partajați
Copiat în clipboard
x^{2}+x+0
Înmulțiți -1 cu 0 pentru a obține 0.
x^{2}+x
Orice număr plus zero este egal cu el însuși.
x\left(x+1\right)
Scoateți factorul comun x.
x^{2}+x=0
Polinomul de gradul doi se poate descompune în factori folosind transformarea ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), unde x_{1} și x_{2} sunt soluțiile ecuației de gradul doi ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}}}{2}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate utilizând formula rădăcinilor ecuației de gradul al doilea: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula rădăcinilor ecuației de gradul al doilea oferă două soluții, una atunci când operația ± este de adunare și una atunci când este de scădere.
x=\frac{-1±1}{2}
Aflați rădăcina pătrată pentru 1^{2}.
x=\frac{0}{2}
Acum rezolvați ecuația x=\frac{-1±1}{2} atunci când ± este plus. Adunați -1 cu 1.
x=0
Împărțiți 0 la 2.
x=-\frac{2}{2}
Acum rezolvați ecuația x=\frac{-1±1}{2} atunci când ± este minus. Scădeți 1 din -1.
x=-1
Împărțiți -2 la 2.
x^{2}+x=x\left(x-\left(-1\right)\right)
Descompuneți în factori expresia inițială utilizând ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Înlocuiți x_{1} cu 0 și x_{2} cu -1.
x^{2}+x=x\left(x+1\right)
Simplificați toate expresiile formei p-\left(-q\right) la p+q.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}