Rezolvați pentru x
x=-6
x=1
Grafic
Partajați
Copiat în clipboard
a+b=5 ab=-6
Pentru a rezolva ecuația, factorul x^{2}+5x-6 utilizând formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Pentru a găsi a și b, configurați un sistem pentru a fi rezolvat.
-1,6 -2,3
Deoarece ab este negativ, a și b au semne opuse. Deoarece a+b este pozitiv, numărul pozitiv are o valoare absolută mai mare decât valoarea negativă. Listează toate perechi de valori întregi care oferă produse -6.
-1+6=5 -2+3=1
Calculați suma pentru fiecare pereche.
a=-1 b=6
Soluția este perechea care dă suma de 5.
\left(x-1\right)\left(x+6\right)
Rescrieți expresia descompusă în factori \left(x+a\right)\left(x+b\right) utilizând valorile obținute.
x=1 x=-6
Pentru a găsi soluții de ecuații, rezolvați x-1=0 și x+6=0.
a+b=5 ab=1\left(-6\right)=-6
Pentru a rezolva ecuația, factor mâna stângă după grupare. Mai întâi, fața la stânga trebuie să fie rescrisă ca x^{2}+ax+bx-6. Pentru a găsi a și b, configurați un sistem pentru a fi rezolvat.
-1,6 -2,3
Deoarece ab este negativ, a și b au semne opuse. Deoarece a+b este pozitiv, numărul pozitiv are o valoare absolută mai mare decât valoarea negativă. Listează toate perechi de valori întregi care oferă produse -6.
-1+6=5 -2+3=1
Calculați suma pentru fiecare pereche.
a=-1 b=6
Soluția este perechea care dă suma de 5.
\left(x^{2}-x\right)+\left(6x-6\right)
Rescrieți x^{2}+5x-6 ca \left(x^{2}-x\right)+\left(6x-6\right).
x\left(x-1\right)+6\left(x-1\right)
Factor x în primul și 6 în al doilea grup.
\left(x-1\right)\left(x+6\right)
Scoateți termenul comun x-1 prin utilizarea proprietății de distributivitate.
x=1 x=-6
Pentru a găsi soluții de ecuații, rezolvați x-1=0 și x+6=0.
x^{2}+5x-6=0
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate utilizând formula rădăcinilor ecuației de gradul al doilea: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula rădăcinilor ecuației de gradul al doilea oferă două soluții, una atunci când operația ± este de adunare și una atunci când este de scădere.
x=\frac{-5±\sqrt{5^{2}-4\left(-6\right)}}{2}
Această ecuație este în formă standard: ax^{2}+bx+c=0. Înlocuiți a cu 1, b cu 5 și c cu -6 în formula rădăcinilor ecuațiilor de gradul al doilea, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-6\right)}}{2}
Ridicați 5 la pătrat.
x=\frac{-5±\sqrt{25+24}}{2}
Înmulțiți -4 cu -6.
x=\frac{-5±\sqrt{49}}{2}
Adunați 25 cu 24.
x=\frac{-5±7}{2}
Aflați rădăcina pătrată pentru 49.
x=\frac{2}{2}
Acum rezolvați ecuația x=\frac{-5±7}{2} atunci când ± este plus. Adunați -5 cu 7.
x=1
Împărțiți 2 la 2.
x=-\frac{12}{2}
Acum rezolvați ecuația x=\frac{-5±7}{2} atunci când ± este minus. Scădeți 7 din -5.
x=-6
Împărțiți -12 la 2.
x=1 x=-6
Ecuația este rezolvată acum.
x^{2}+5x-6=0
Ecuațiile de gradul doi ca aceasta pot fi rezolvate prin completarea pătratului. Pentru a completa pătratul, ecuația trebuie mai întâi să fie sub forma x^{2}+bx=c.
x^{2}+5x-6-\left(-6\right)=-\left(-6\right)
Adunați 6 la ambele părți ale ecuației.
x^{2}+5x=-\left(-6\right)
Scăderea -6 din el însuși are ca rezultat 0.
x^{2}+5x=6
Scădeți -6 din 0.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=6+\left(\frac{5}{2}\right)^{2}
Împărțiți 5, coeficientul termenului x, la 2 pentru a obține \frac{5}{2}. Apoi, adunați pătratul lui \frac{5}{2} la ambele părți ale ecuației. Acest pas face din partea stângă a ecuației un pătrat perfect.
x^{2}+5x+\frac{25}{4}=6+\frac{25}{4}
Ridicați \frac{5}{2} la pătrat, calculând pătratul pentru numărătorul și numitorul fracției.
x^{2}+5x+\frac{25}{4}=\frac{49}{4}
Adunați 6 cu \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{49}{4}
Factor x^{2}+5x+\frac{25}{4}. În general, atunci când x^{2}+bx+c este un pătrat perfect, el poate fi descompus în factori oricând ca \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Aflați rădăcina pătrată pentru ambele părți ale ecuației.
x+\frac{5}{2}=\frac{7}{2} x+\frac{5}{2}=-\frac{7}{2}
Simplificați.
x=1 x=-6
Scădeți \frac{5}{2} din ambele părți ale ecuației.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}