Direct la conținutul principal
Evaluați
Tick mark Image
Calculați derivata în funcție de x
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

\left(x^{3}\right)^{-\frac{1}{3}}
Pentru a simplifica expresia, utilizați regulile pentru exponenți.
x^{3\left(-\frac{1}{3}\right)}
Pentru a ridica o putere la o altă putere, înmulțiți exponenții.
\frac{1}{x}
Înmulțiți 3 cu -\frac{1}{3}.
-\frac{1}{3}\left(x^{3}\right)^{-\frac{1}{3}-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{3})
Dacă F este compusa a două funcții derivabile f\left(u\right) și u=g\left(x\right), mai exact, dacă F\left(x\right)=f\left(g\left(x\right)\right), atunci derivata lui F este derivata lui f în raport cu u înmulțit cu derivata lui g în raport cu x, mai exact, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\frac{1}{3}\left(x^{3}\right)^{-\frac{4}{3}}\times 3x^{3-1}
Derivata unui polinom este suma derivatelor termenilor săi. Derivata unui termen constant este 0. Derivata lui ax^{n} este nax^{n-1}.
-x^{2}\left(x^{3}\right)^{-\frac{4}{3}}
Simplificați.