Direct la conținutul principal
Evaluați
Tick mark Image

Probleme similare din căutarea web

Partajați

\int _{0}^{2}\left(x\left(x^{2}-4x+4\right)\right)^{2}\mathrm{d}x
Utilizați binomul lui Newton \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pentru a extinde \left(x-2\right)^{2}.
\int _{0}^{2}\left(x^{3}-4x^{2}+4x\right)^{2}\mathrm{d}x
Utilizați proprietatea de distributivitate pentru a înmulți x cu x^{2}-4x+4.
\int _{0}^{2}x^{6}-8x^{5}+24x^{4}-32x^{3}+16x^{2}\mathrm{d}x
Ridicați x^{3}-4x^{2}+4x la pătrat.
\int x^{6}-8x^{5}+24x^{4}-32x^{3}+16x^{2}\mathrm{d}x
Evaluați mai întâi integrala definită.
\int x^{6}\mathrm{d}x+\int -8x^{5}\mathrm{d}x+\int 24x^{4}\mathrm{d}x+\int -32x^{3}\mathrm{d}x+\int 16x^{2}\mathrm{d}x
Integrați suma, termen cu termen.
\int x^{6}\mathrm{d}x-8\int x^{5}\mathrm{d}x+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Eliminați constanta din fiecare dintre termeni.
\frac{x^{7}}{7}-8\int x^{5}\mathrm{d}x+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{6}\mathrm{d}x cu \frac{x^{7}}{7}.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{5}\mathrm{d}x cu \frac{x^{6}}{6}. Înmulțiți -8 cu \frac{x^{6}}{6}.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{4}\mathrm{d}x cu \frac{x^{5}}{5}. Înmulțiți 24 cu \frac{x^{5}}{5}.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-8x^{4}+16\int x^{2}\mathrm{d}x
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{3}\mathrm{d}x cu \frac{x^{4}}{4}. Înmulțiți -32 cu \frac{x^{4}}{4}.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-8x^{4}+\frac{16x^{3}}{3}
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{2}\mathrm{d}x cu \frac{x^{3}}{3}. Înmulțiți 16 cu \frac{x^{3}}{3}.
\frac{16x^{3}}{3}-8x^{4}+\frac{24x^{5}}{5}-\frac{4x^{6}}{3}+\frac{x^{7}}{7}
Simplificați.
\frac{16}{3}\times 2^{3}-8\times 2^{4}+\frac{24}{5}\times 2^{5}-\frac{4}{3}\times 2^{6}+\frac{2^{7}}{7}-\left(\frac{16}{3}\times 0^{3}-8\times 0^{4}+\frac{24}{5}\times 0^{5}-\frac{4}{3}\times 0^{6}+\frac{0^{7}}{7}\right)
Integrala definită este primitiva expresiei evaluată la limita superioară a integralei, minus primitiva evaluată la limita inferioară a integralei.
\frac{128}{105}
Simplificați.