Evaluați
\frac{53}{15}\approx 3,533333333
Partajați
Copiat în clipboard
\int _{0}^{1}x^{2}\left(x^{2}-8x+16\right)\mathrm{d}x
Utilizați binomul lui Newton \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pentru a extinde \left(x-4\right)^{2}.
\int _{0}^{1}x^{4}-8x^{3}+16x^{2}\mathrm{d}x
Utilizați proprietatea de distributivitate pentru a înmulți x^{2} cu x^{2}-8x+16.
\int x^{4}-8x^{3}+16x^{2}\mathrm{d}x
Evaluați mai întâi integrala definită.
\int x^{4}\mathrm{d}x+\int -8x^{3}\mathrm{d}x+\int 16x^{2}\mathrm{d}x
Integrați suma, termen cu termen.
\int x^{4}\mathrm{d}x-8\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Eliminați constanta din fiecare dintre termeni.
\frac{x^{5}}{5}-8\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{4}\mathrm{d}x cu \frac{x^{5}}{5}.
\frac{x^{5}}{5}-2x^{4}+16\int x^{2}\mathrm{d}x
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{3}\mathrm{d}x cu \frac{x^{4}}{4}. Înmulțiți -8 cu \frac{x^{4}}{4}.
\frac{x^{5}}{5}-2x^{4}+\frac{16x^{3}}{3}
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{2}\mathrm{d}x cu \frac{x^{3}}{3}. Înmulțiți 16 cu \frac{x^{3}}{3}.
\frac{16x^{3}}{3}-2x^{4}+\frac{x^{5}}{5}
Simplificați.
\frac{16}{3}\times 1^{3}-2\times 1^{4}+\frac{1^{5}}{5}-\left(\frac{16}{3}\times 0^{3}-2\times 0^{4}+\frac{0^{5}}{5}\right)
Integrala definită este primitiva expresiei evaluată la limita superioară a integralei, minus primitiva evaluată la limita inferioară a integralei.
\frac{53}{15}
Simplificați.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}