Direct la conținutul principal
Evaluați
Tick mark Image
Calculați derivata în funcție de x
Tick mark Image

Probleme similare din căutarea web

Partajați

\int 8x^{3}-12x^{2}\mathrm{d}x
Utilizați proprietatea de distributivitate pentru a înmulți 2x^{2} cu 4x-6.
\int 8x^{3}\mathrm{d}x+\int -12x^{2}\mathrm{d}x
Integrați suma, termen cu termen.
8\int x^{3}\mathrm{d}x-12\int x^{2}\mathrm{d}x
Eliminați constanta din fiecare dintre termeni.
2x^{4}-12\int x^{2}\mathrm{d}x
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{3}\mathrm{d}x cu \frac{x^{4}}{4}. Înmulțiți 8 cu \frac{x^{4}}{4}.
2x^{4}-4x^{3}
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{2}\mathrm{d}x cu \frac{x^{3}}{3}. Înmulțiți -12 cu \frac{x^{3}}{3}.
2x^{4}-4x^{3}+С
Dacă F\left(x\right) este o primitiva de f\left(x\right), atunci setul tuturor antiderivatives de f\left(x\right) este dat de F\left(x\right)+C. Prin urmare, adăugați constanta de integrare C\in \mathrm{R} la rezultat.