Direct la conținutul principal
Evaluați
Tick mark Image
Calculați derivata în funcție de x
Tick mark Image

Probleme similare din căutarea web

Partajați

\int \frac{x^{3}}{3}\mathrm{d}x
Pentru a împărți puterile cu aceeași bază, scădeți exponentul numitorului din exponentul numărătorului.
\frac{\int x^{3}\mathrm{d}x}{3}
Excludeți constanta utilizând \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{x^{4}}{12}
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{3}\mathrm{d}x cu \frac{x^{4}}{4}.
\frac{x^{4}}{12}+С
Dacă F\left(x\right) este o primitiva de f\left(x\right), atunci setul tuturor antiderivatives de f\left(x\right) este dat de F\left(x\right)+C. Prin urmare, adăugați constanta de integrare C\in \mathrm{R} la rezultat.