Evaluați
\frac{fx\left(x^{2}-a^{2}\right)}{2}
Calculați derivata în funcție de x
\frac{3fx^{2}-fa^{2}}{2}
Partajați
Copiat în clipboard
\int xft\mathrm{d}t
Evaluați mai întâi integrala definită.
xf\int t\mathrm{d}t
Excludeți constanta utilizând \int af\left(t\right)\mathrm{d}t=a\int f\left(t\right)\mathrm{d}t.
xf\times \frac{t^{2}}{2}
Deoarece \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int t\mathrm{d}t cu \frac{t^{2}}{2}.
\frac{xft^{2}}{2}
Simplificați.
\frac{1}{2}xfx^{2}-\frac{1}{2}xfa^{2}
Integrala definită este primitiva expresiei evaluată la limita superioară a integralei, minus primitiva evaluată la limita inferioară a integralei.
\frac{xf\left(x-a\right)\left(x+a\right)}{2}
Simplificați.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}