Direct la conținutul principal
Evaluați
Tick mark Image

Probleme similare din căutarea web

Partajați

\int _{0}^{2}16x^{2}-8xx^{3}+\left(x^{3}\right)^{2}\mathrm{d}x
Utilizați binomul lui Newton \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pentru a extinde \left(4x-x^{3}\right)^{2}.
\int _{0}^{2}16x^{2}-8x^{4}+\left(x^{3}\right)^{2}\mathrm{d}x
Pentru a înmulți puterile cu aceeași baze, adunați exponenții lor. Adunați 1 și 3 pentru a obține 4.
\int _{0}^{2}16x^{2}-8x^{4}+x^{6}\mathrm{d}x
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 3 cu 2 pentru a obține 6.
\int 16x^{2}-8x^{4}+x^{6}\mathrm{d}x
Evaluați mai întâi integrala definită.
\int 16x^{2}\mathrm{d}x+\int -8x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
Integrați suma, termen cu termen.
16\int x^{2}\mathrm{d}x-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
Eliminați constanta din fiecare dintre termeni.
\frac{16x^{3}}{3}-8\int x^{4}\mathrm{d}x+\int x^{6}\mathrm{d}x
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{2}\mathrm{d}x cu \frac{x^{3}}{3}. Înmulțiți 16 cu \frac{x^{3}}{3}.
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\int x^{6}\mathrm{d}x
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{4}\mathrm{d}x cu \frac{x^{5}}{5}. Înmulțiți -8 cu \frac{x^{5}}{5}.
\frac{16x^{3}}{3}-\frac{8x^{5}}{5}+\frac{x^{7}}{7}
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{6}\mathrm{d}x cu \frac{x^{7}}{7}.
\frac{x^{7}}{7}-\frac{8x^{5}}{5}+\frac{16x^{3}}{3}
Simplificați.
\frac{2^{7}}{7}-\frac{8}{5}\times 2^{5}+\frac{16}{3}\times 2^{3}-\left(\frac{0^{7}}{7}-\frac{8}{5}\times 0^{5}+\frac{16}{3}\times 0^{3}\right)
Integrala definită este primitiva expresiei evaluată la limita superioară a integralei, minus primitiva evaluată la limita inferioară a integralei.
\frac{1024}{105}
Simplificați.