Direct la conținutul principal
Evaluați
Tick mark Image

Probleme similare din căutarea web

Partajați

\int x^{2}-x\mathrm{d}x
Evaluați mai întâi integrala definită.
\int x^{2}\mathrm{d}x+\int -x\mathrm{d}x
Integrați suma, termen cu termen.
\int x^{2}\mathrm{d}x-\int x\mathrm{d}x
Eliminați constanta din fiecare dintre termeni.
\frac{x^{3}}{3}-\int x\mathrm{d}x
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{2}\mathrm{d}x cu \frac{x^{3}}{3}.
\frac{x^{3}}{3}-\frac{x^{2}}{2}
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x\mathrm{d}x cu \frac{x^{2}}{2}. Înmulțiți -1 cu \frac{x^{2}}{2}.
\frac{1^{3}}{3}-\frac{1^{2}}{2}-\left(\frac{0^{3}}{3}-\frac{0^{2}}{2}\right)
Integrala definită este primitiva expresiei evaluată la limita superioară a integralei, minus primitiva evaluată la limita inferioară a integralei.
-\frac{1}{6}
Simplificați.