Evaluați
-\frac{27}{2}=-13,5
Test
Integration
5 probleme similare cu aceasta:
\int _ { 0 } ^ { 1 } ( 2 x + 3 ) \cdot ( 3 x - 5 ) d x
Partajați
Copiat în clipboard
\int _{0}^{1}6x^{2}-10x+9x-15\mathrm{d}x
Aplicați proprietatea distributivă prin înmulțirea fiecărui termen de 2x+3 la fiecare termen de 3x-5.
\int _{0}^{1}6x^{2}-x-15\mathrm{d}x
Combinați -10x cu 9x pentru a obține -x.
\int 6x^{2}-x-15\mathrm{d}x
Evaluați mai întâi integrala definită.
\int 6x^{2}\mathrm{d}x+\int -x\mathrm{d}x+\int -15\mathrm{d}x
Integrați suma, termen cu termen.
6\int x^{2}\mathrm{d}x-\int x\mathrm{d}x+\int -15\mathrm{d}x
Eliminați constanta din fiecare dintre termeni.
2x^{3}-\int x\mathrm{d}x+\int -15\mathrm{d}x
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{2}\mathrm{d}x cu \frac{x^{3}}{3}. Înmulțiți 6 cu \frac{x^{3}}{3}.
2x^{3}-\frac{x^{2}}{2}+\int -15\mathrm{d}x
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x\mathrm{d}x cu \frac{x^{2}}{2}. Înmulțiți -1 cu \frac{x^{2}}{2}.
2x^{3}-\frac{x^{2}}{2}-15x
Găsiți integral -15 utilizând tabelul de reguli integrale comune \int a\mathrm{d}x=ax.
2\times 1^{3}-\frac{1^{2}}{2}-15-\left(2\times 0^{3}-\frac{0^{2}}{2}-15\times 0\right)
Integrala definită este primitiva expresiei evaluată la limita superioară a integralei, minus primitiva evaluată la limita inferioară a integralei.
-\frac{27}{2}
Simplificați.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}