Direct la conținutul principal
Evaluați
Tick mark Image
Calculați derivata în funcție de x
Tick mark Image

Probleme similare din căutarea web

Partajați

\int x^{5}\mathrm{d}x+\int -7\mathrm{d}x+\int \frac{4}{x^{2}}\mathrm{d}x
Integrați suma, termen cu termen.
\int x^{5}\mathrm{d}x+\int -7\mathrm{d}x+4\int \frac{1}{x^{2}}\mathrm{d}x
Eliminați constanta din fiecare dintre termeni.
\frac{x^{6}}{6}+\int -7\mathrm{d}x+4\int \frac{1}{x^{2}}\mathrm{d}x
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{5}\mathrm{d}x cu \frac{x^{6}}{6}.
\frac{x^{6}}{6}-7x+4\int \frac{1}{x^{2}}\mathrm{d}x
Găsiți integral -7 utilizând tabelul de reguli integrale comune \int a\mathrm{d}x=ax.
\frac{x^{6}}{6}-7x-\frac{4}{x}
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int \frac{1}{x^{2}}\mathrm{d}x cu -\frac{1}{x}. Înmulțiți 4 cu -\frac{1}{x}.
\frac{x^{6}}{6}-7x-\frac{4}{x}+С
Dacă F\left(x\right) este o primitiva de f\left(x\right), atunci setul tuturor antiderivatives de f\left(x\right) este dat de F\left(x\right)+C. Prin urmare, adăugați constanta de integrare C\in \mathrm{R} la rezultat.