Direct la conținutul principal
Evaluați
Tick mark Image
Calculați derivata în funcție de x
Tick mark Image

Probleme similare din căutarea web

Partajați

\frac{\left(3x^{1}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}-x^{3})-\left(x^{4}-x^{3}\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}+1)}{\left(3x^{1}+1\right)^{2}}
Pentru orice două funcții diferențiabile, derivata câtului celor două funcții este numitorul înmulțit cu derivata numărătorului, minus numărătorul înmulțit cu derivata numitorului, totul împărțit la numitorul la pătrat.
\frac{\left(3x^{1}+1\right)\left(4x^{4-1}+3\left(-1\right)x^{3-1}\right)-\left(x^{4}-x^{3}\right)\times 3x^{1-1}}{\left(3x^{1}+1\right)^{2}}
Derivata unui polinom este suma derivatelor termenilor săi. Derivata unui termen constant este 0. Derivata lui ax^{n} este nax^{n-1}.
\frac{\left(3x^{1}+1\right)\left(4x^{3}-3x^{2}\right)-\left(x^{4}-x^{3}\right)\times 3x^{0}}{\left(3x^{1}+1\right)^{2}}
Simplificați.
\frac{3x^{1}\times 4x^{3}+3x^{1}\left(-3\right)x^{2}+4x^{3}-3x^{2}-\left(x^{4}-x^{3}\right)\times 3x^{0}}{\left(3x^{1}+1\right)^{2}}
Înmulțiți 3x^{1}+1 cu 4x^{3}-3x^{2}.
\frac{3x^{1}\times 4x^{3}+3x^{1}\left(-3\right)x^{2}+4x^{3}-3x^{2}-\left(x^{4}\times 3x^{0}-x^{3}\times 3x^{0}\right)}{\left(3x^{1}+1\right)^{2}}
Înmulțiți x^{4}-x^{3} cu 3x^{0}.
\frac{3\times 4x^{1+3}+3\left(-3\right)x^{1+2}+4x^{3}-3x^{2}-\left(3x^{4}-3x^{3}\right)}{\left(3x^{1}+1\right)^{2}}
Pentru a înmulți puterile cu aceleași baze, adunați exponenții lor.
\frac{12x^{4}-9x^{3}+4x^{3}-3x^{2}-\left(3x^{4}-3x^{3}\right)}{\left(3x^{1}+1\right)^{2}}
Simplificați.
\frac{9x^{4}-6x^{3}+4x^{3}-3x^{2}}{\left(3x^{1}+1\right)^{2}}
Combinați termenii asemenea.
\frac{9x^{4}-6x^{3}+4x^{3}-3x^{2}}{\left(3x+1\right)^{2}}
Pentru orice termen t, t^{1}=t.