Direct la conținutul principal
Verificare
adevărat
Tick mark Image

Probleme similare din căutarea web

Partajați

\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
Raționalizați numitor de \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} prin înmulțirea numărătorului și a numitorului de către \sqrt{5}+\sqrt{3}.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
Să luăm \left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right). Înmulțirea poate fi transformată în diferența pătratelor, folosind regula: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
Ridicați \sqrt{5} la pătrat. Ridicați \sqrt{3} la pătrat.
\frac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
Scădeți 3 din 5 pentru a obține 2.
\frac{\left(\sqrt{5}+\sqrt{3}\right)^{2}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
Înmulțiți \sqrt{5}+\sqrt{3} cu \sqrt{5}+\sqrt{3} pentru a obține \left(\sqrt{5}+\sqrt{3}\right)^{2}.
\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
Utilizați binomul lui Newton \left(a+b\right)^{2}=a^{2}+2ab+b^{2} pentru a extinde \left(\sqrt{5}+\sqrt{3}\right)^{2}.
\frac{5+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
Pătratul lui \sqrt{5} este 5.
\frac{5+2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
Pentru a înmulțiți \sqrt{5} și \sqrt{3}, înmulțiți numerele de sub rădăcina pătrată.
\frac{5+2\sqrt{15}+3}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
Pătratul lui \sqrt{3} este 3.
\frac{8+2\sqrt{15}}{2}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
Adunați 5 și 3 pentru a obține 8.
4+\sqrt{15}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2\sqrt{15}
Împărțiți fiecare termen din 8+2\sqrt{15} la 2 pentru a obține 4+\sqrt{15}.
4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}=2\sqrt{15}
Raționalizați numitor de \frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} prin înmulțirea numărătorului și a numitorului de către \sqrt{5}-\sqrt{3}.
4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}=2\sqrt{15}
Să luăm \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Înmulțirea poate fi transformată în diferența pătratelor, folosind regula: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5-3}=2\sqrt{15}
Ridicați \sqrt{5} la pătrat. Ridicați \sqrt{3} la pătrat.
4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}=2\sqrt{15}
Scădeți 3 din 5 pentru a obține 2.
4+\sqrt{15}-\frac{\left(\sqrt{5}-\sqrt{3}\right)^{2}}{2}=2\sqrt{15}
Înmulțiți \sqrt{5}-\sqrt{3} cu \sqrt{5}-\sqrt{3} pentru a obține \left(\sqrt{5}-\sqrt{3}\right)^{2}.
4+\sqrt{15}-\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}=2\sqrt{15}
Utilizați binomul lui Newton \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pentru a extinde \left(\sqrt{5}-\sqrt{3}\right)^{2}.
4+\sqrt{15}-\frac{5-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}=2\sqrt{15}
Pătratul lui \sqrt{5} este 5.
4+\sqrt{15}-\frac{5-2\sqrt{15}+\left(\sqrt{3}\right)^{2}}{2}=2\sqrt{15}
Pentru a înmulțiți \sqrt{5} și \sqrt{3}, înmulțiți numerele de sub rădăcina pătrată.
4+\sqrt{15}-\frac{5-2\sqrt{15}+3}{2}=2\sqrt{15}
Pătratul lui \sqrt{3} este 3.
4+\sqrt{15}-\frac{8-2\sqrt{15}}{2}=2\sqrt{15}
Adunați 5 și 3 pentru a obține 8.
4+\sqrt{15}-\left(4-\sqrt{15}\right)=2\sqrt{15}
Împărțiți fiecare termen din 8-2\sqrt{15} la 2 pentru a obține 4-\sqrt{15}.
4+\sqrt{15}-4-\left(-\sqrt{15}\right)=2\sqrt{15}
Pentru a găsi opusul lui 4-\sqrt{15}, găsiți opusul fiecărui termen.
4+\sqrt{15}-4+\sqrt{15}=2\sqrt{15}
Opusul lui -\sqrt{15} este \sqrt{15}.
\sqrt{15}+\sqrt{15}=2\sqrt{15}
Scădeți 4 din 4 pentru a obține 0.
2\sqrt{15}=2\sqrt{15}
Combinați \sqrt{15} cu \sqrt{15} pentru a obține 2\sqrt{15}.
2\sqrt{15}-2\sqrt{15}=0
Scădeți 2\sqrt{15} din ambele părți.
0=0
Combinați 2\sqrt{15} cu -2\sqrt{15} pentru a obține 0.
\text{true}
Comparați 0 și 0.