\frac { e ^ { x } 3 ^ { \frac { 21 e e ^ { x } } { 2 } } } { \sec e ^ { x } ( 3 + 3 ^ { ( \sin e ^ { x } ) } ) } d x
Evaluați
\frac{dxe^{x}\cos(e^{x})\times 3^{\frac{21e^{x+1}}{2}}}{3^{\sin(e^{x})}+3}
Calculați derivata în funcție de x
\frac{d\left(-2\ln(3)xe^{2x}\times 3^{\frac{21e^{x+1}+2\sin(e^{x})}{2}}\left(\cos(e^{x})\right)^{2}+21\ln(3)x\cos(e^{x})e^{2x+1}\times 3^{\frac{21e^{x+1}+2\sin(e^{x})}{2}}+2xe^{x}\cos(e^{x})\times 3^{\frac{21e^{x+1}+2\sin(e^{x})}{2}}-2xe^{2x}\sin(e^{x})\times 3^{\frac{21e^{x+1}+2\sin(e^{x})}{2}}+63\ln(3)x\cos(e^{x})e^{2x+1}\times 3^{\frac{21e^{x+1}}{2}}+6xe^{x}\cos(e^{x})\times 3^{\frac{21e^{x+1}}{2}}-6xe^{2x}\sin(e^{x})\times 3^{\frac{21e^{x+1}}{2}}+2e^{x}\cos(e^{x})\times 3^{\frac{21e^{x+1}+2\sin(e^{x})}{2}}+6e^{x}\cos(e^{x})\times 3^{\frac{21e^{x+1}}{2}}\right)}{2\left(3^{\sin(e^{x})}+3\right)^{2}}
Grafic
Partajați
Copiat în clipboard
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}